1000 resultados para Prosthesis Design
Resumo:
The aim of this study was to use photoelastic models to analyze the distribution of stress caused by the incidence of loads on a mandibular distal extension removable partial denture, both on the abutment teeth and on differently shaped residual ridges: distal ascending, descending-ascending, horizontal and distal descending. The best type of retainer and location of the rest on the last abutment tooth were determined for the different types of ridge. Four models were made from photoelastic resin (PL-1 for the teeth and PL-2 for the alveolar ridge), one for each kind of ridge. For each model, 4 removable partial dentures (RPD) were made (16 RPD altogether): T-bar retainer and distal rest, T-bar retainer and mesial rest, circumferential retainer and distal rest, and circumferential retainer and mesial rest. The models were placed on a circular polariscope and a 100 N axial load (point load) was applied to premolars and molars of the RPD. The formation of photoelastic bands was photographed for qualitative analysis. Results showed that the horizontal ridge had better distribution of stress, while the distal descending ridge had greater concentration of stress. The circumferential retainer had greater areas of stress for all types of ridges except the horizontal ridge, where there was no influence related to retainer type. The distribution of stress was similar among the different types of ridges when the rest was mesial or distal to the last abutment tooth, except for the distal descending ridge, where there was greater concentration of stress when the rest was located distally to the last abutment tooth. Thus, it may be concluded that (1) the situation was least favorable for the distal descending ridge and most favorable for the horizontal ridge, (2) the T-bar retainer had more favorable stress distribution, except when the ridge was horizontal, in which case there was no influence in relation to the type of retainer, (3) the location of the rest showed similar behavior in all except the distal descending ridge.
Resumo:
Purpose: The aim of this study was to evaluate the effect of different levels of unilateral angular misfit on preload maintenance of retention screws of single implant-supported prostheses submitted to mechanical cycling. Materials and methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n=12). The crowns presented no misfit in Group A (control group) and unilateral misfits of 50μm, 100μm and 200μm in the groups B, C and D, respectively. The crowns were attached to external hexagon implants with a titanium retention screw with torque of 30N/cm. Oblique loading of 130N at 2Hz was applied on each replica, totalizing 5×104 and 1×106cycles. Detorque values were measured initially and after each cycling period. Data were evaluated by analysis of variance and Tukey's HSD test (p<0.05). Results: All groups presented reduced initial detorque values (p< 0.05) in comparison to the insertion torque (30. ± 0.5. N/cm) and Group A (25.18. N/cm) exhibited the lowest reduction. After mechanical cycling, all groups presented detorque values from 19.5. N/cm to 22.38. N/cm and the mechanical cycling did not statistically influence the detorque values regardless the misfit level of the replicas. Conclusion: The unilateral misfit influenced the preload maintenance only before mechanical cycling. The mechanical cycling did not influence the torque reduction. © 2010 Japan Prosthodontic Society.
Resumo:
The development of all-ceramic systems following metalceramics restorations allowed simulation of natural dentition due to favorable esthetics and resistance. In-Ceram is an alternative when esthetics is primordial as well as resistance required in rehabilitation. However, an ideal smile is associated to not only shape, color, texture and translucency but also harmony with gingival tissue. So, the aim of this study is to report a clinical case based on periodontal and fixed partial dentures principles to perform periodontal plastic surgery followed by esthetic rehabilitation. A female patient, 40-year-old, presented complaint about dental esthetics. After clinical and radiographic exams, metal-ceramics crowns (teeth 11, 12, 13, 21, 22 and 23) were considered unsatisfactory due to marginal leakage, color change in gingival tissue associated to metallic margin, and gummy smile. So, a crown lengthening surgery of anterior teeth was performed followed by rehabilitation of superior teeth with In-Ceram single crowns. Clinical significance: The interaction between periodontics and fixed prosthodontic area is the key of an adequated treatment planning which involves gingival smile to provide function and an esthetic condition in association with an esthetic, resistant and predictable material.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
It is becoming more common for patients to look for cosmetic procedures in dental offices. The search for lost or desired esthetics by patients is increasingly frequent and the professional must be able to meet this demand. To do this, dentists not only need to return the tooth back to its normal functioning state but also promote esthetic excellence. In this context, the association of cosmetic procedures, such as teeth whitening and restorative procedures, such as direct adhesive restorations is very common. The composite resins employed nowadays allow the reproduction of various optical properties of natural teeth. With these composite resins, it is possible to reproduce features such as translucency, opacity and specific features of the dental element, to bring back the esthetic harmony of the smile. This article reports a clinical case demonstrating the placement, in a stratified manner, of composite resins in bleached teeth, as well as the reproduction of optical and natural aspects of the teeth. In order to achieve esthetic and functional success of the restored procedure, it is important to be familiar with the new techniques and new materials in the marketand above all, we must know when and where to use them.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning. © 2013 SPIE.
Resumo:
The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/ expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.
Resumo:
The design of oral health has as its most important to bring knowledge, prevention and treatment for the population of municipalities that have this important means of promoting health in general. These programs are based on socio-educational projects, such as tooth brushing, educational lectures, projects, preventive and, fluoride use, application of sealants in pits and even the prevention of oral cancer. In the area of healing, the centers of dental specialties (CEO) associated with the PSF are responsible for implementing treatment of periodontal diseases, trauma, restoration of teeth affected by dental caries, prosthesis design for functional rehabilitation of the patient, biopsies of oral lesions , among other specialties. This study aims to evaluate the students of the Graduate Program in Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho, Campus de Araçatuba, in order to coordinate a program to promote health in their communities. The result based on parameters in the OMS showed that the majority of graduate students of the Faculty of Dentistry Araçatuba acquired knowledge to a reasonable oral health program in their city as a coordinator.
Resumo:
The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.
Resumo:
Knowledge on how ligaments and articular surfaces guide passive motion at the human ankle joint complex is fundamental for the design of relevant surgical treatments. The dissertation presents a possible improvement of this knowledge by a new kinematic model of the tibiotalar articulation. In this dissertation two one-DOF spatial equivalent mechanisms are presented for the simulation of the passive motion of the human ankle joint: the 5-5 fully parallel mechanism and the fully parallel spherical wrist mechanism. These mechanisms are based on the main anatomical structures of the ankle joint, namely the talus/calcaneus and the tibio/fibula bones at their interface, and the TiCaL and CaFiL ligaments. In order to show the accuracy of the models and the efficiency of the proposed procedure, these mechanisms are synthesized from experimental data and the results are compared with those obtained both during experimental sessions and with data published in the literature. Experimental results proved the efficiency of the proposed new mechanisms to simulate the ankle passive motion and, at the same time, the potentiality of the mechanism to replicate the ankle’s main anatomical structures quite well. The new mechanisms represent a powerful tool for both pre-operation planning and new prosthesis design.
Resumo:
Total ankle arthroplasty (TAA) is still not as satisfactory as total hip and total knee arthroplasty. For the TAA to be considered a valuable alternative to ankle arthrodesis, an effective range of ankle mobility must be recovered. The disappointing clinical results of the current generation of TAA are mostly related to poor understanding of the structures guiding ankle joint mobility. A new design (BOX Ankle) has been developed, uniquely able to restore physiologic ankle mobility and a natural relationship between the implanted components and the retained ligaments. For the first time the shapes of the tibial and talar components in the sagittal plane were designed to be compatible with the demonstrated ligament isometric rotation. This resulted in an unique motion at the replaced ankle where natural sliding as well as rolling motion occurs while at the same time full conformity is maintained between the three components throughout the flexion arc. According to prior research, the design features a spherical convex tibial component, a talar component with radius of curvature in the sagittal plane longer than that of the natural talus, and a fully conforming meniscal component. After computer-based modelling and preliminary observations in several trial implantation in specimens, 126 patients were implanted in the period July 2003 – December 2008. 75 patients with at least 6 months follow-up are here reported. Mean age was 62,6 years (range 22 – 80), mean follow-up 20,2 months. The AOFAS clinical score systems were used to assess patient outcome. Radiographs at maximal dorsiflexion and maximal plantar flexion confirmed the meniscalbearing component moves anteriorly during dorsiflexion and posteriorly during plantarflexion. Frontal and lateral radiographs in the patients, show good alignment of the components, and no signs of radiolucency or loosening. The mean AOFAS score was observed to go from 41 pre-op to 74,6 at 6 month follow-up, with further improvement at the following follow-up. These early results reveal satisfactory clinical scores, with good recovery of range of motion and reduction of pain. Radiographic assessment reveals good osteointegration. All these preliminary results confirm biomechanical studies and the validity of this novel ligamentcompatible prosthesis design. Surely it will be important to re-evaluate these patients later.
Resumo:
Background: After oral tumor resection, structural and functional rehabilitation by means of dental prostheses is complex, and positive treatment outcome is not always predictable. Purpose: The objective of the study was to report on oral rehabilitation and quality of life 2-5 years after resection of malignant oral tumors. Materials and Methods: Data of 46 patients (57 ± 7 years) who underwent oral tumor surgery were available. More than 50% of tumors were classified T3 or T4. Open oro-nasal defects resulted in 12 patients and full mandibulary block resections in 23 patients. Comprehensive planning, implant placement, and prosthetic rehabilitation followed an interdisciplinary protocol. Analysis comprised tumor location, type of prostheses, implant survival, and quality of life. Results: Because of advanced tumor status, resections resulted in marked alteration of the oral anatomy requiring complex treatment procedures. Prosthetic rehabilitation comprised fixed and removable prostheses, with 104 implants placed in 28 patients (60%). Early implant loss was high (13%) and cumulative survival rate of loaded implants was <90% after 5 years. Prosthetic plans had to be modified because of side effects of tumor therapy, complications with implants and tumor recurrence. The majority of patients rated quality of life favorable, but some experienced impaired swallowing, dry mouth, limited mouth opening, appearance, and soreness. Conclusions: Some local effects of tumor therapy could not be significantly improved by prosthetic rehabilitation leading to functional and emotional disability. Many patients had passed away or felt too ill to fill the questionnaires. This case series confirms the complex anatomic alterations after tumor resection and the need for individual treatment approaches especially regarding prosthesis design. In spite of disease-related local and general restrictions, most patients gave a positive assessment of quality of life.
Resumo:
Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.
Resumo:
Objective: To evaluate the planning and quality of plaster models for fabricati on of removable parti al dentures received from three commercial prosthodonti c laboratories located in the city of João Pessoa, PB, Brazil, which perform the casting procedures in their facilities. Methods: Forty 40 plaster models were photographed per laboratory, totalizing 120 models. The evaluation was performed using two questi onnaires, one designed for the dental prosthesis technicians, and another applied by the investigator for the visual evaluati on of the models. Data were analyzed using the SPSS soft ware version 13.0. Results: Ninety-two (76.7%) models did not present planning. In addition, no model presented references of insertion plane or guide pins. Calculati on of the mouth preparati on index (MPI) to evaluate the distribution of the oclusal and cingulum abutments or rests showed that 86 (71.7%) models were classifi ed as poor, 23 (19.2%) models as good and only 11 (9,.2%) models as acceptable. Defects were found in 102 (85%) models. Conclusion: The prosthodontists are not preparing the mouth of their pati ents, neglecti ng the planning of removable partial dentures, and passing this responsibility to the dental prosthesis technicians. In addition, the quality of the models sent to the laboratories was unsatisfactory.