736 resultados para Problem solving Study and teaching
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
Es un recurso didáctico para desarrollar en los alumnos de la etapa 3 (key stage 3) del curriculo nacional inglés la comprensión de las matemáticas y las habilidades para el cálculo. Incluye actividades, que pueden fotocopiarse, y que están diseñadas para trabajar de forma individual o en grupo y para que sus respuestas, resultados y objetivos se puedan mejorar mediante la repetición y la práctica. Además, son actividades flexibles, es decir, el profesor puede ampliar o modificar su contenido según las circunstancias de los alumnos. También, es vital el uso del lenguaje, tanto oral como escrito, por los alumnos para ayudarles a comprender y dominar estos conceptos matemáticos.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
To identify and describe the sociodemographic and nutritional characteristics associated with neurobehavioral development among young children living in three communities in the northeastern Andean region of Cayambe-Tabacundo, Ecuador. Women in the study communities who had a child 3 to 61 months of age completed a questionnaire about maternal and child health and sociodemographic characteristics. The Ages and Stages Questionnaire (ASQ) was directly administered to 283 children by two trained interviewers. Growth measurements and a hemoglobin finger-prick blood test were obtained in 2003–2004. Prevalence of developmental delay was calculated, and associations between child development and maternal, child, and household characteristics were explored. High frequencies of developmental delay were observed. Children 3 to 23 months old displayed delay in gross motor skills (30.1%), and children 48 to 61 months old displayed delay in problem-solving skills (73.4%) and fine motor skills (28.1%). A high frequency of both anemia (60.4%) and stunting (53.4%) was observed for all age groups. Maternal educational level was positively associated with communication and problem-solving skills, and monthly household income was positively associated with communication, gross motor, and problem-solving skills. The results suggest a high prevalence of developmental delay and poor child health in this population. Child health status and the child’s environment may contribute to developmental delay in this region of Ecuador, but sociodemographic factors affecting opportunities for stimulation may also play a role. Research is needed to identify what is causing high percentages of neurobehavioral developmental delay in this region of Ecuador.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study is to determine if students solve math problems using addition, subtraction, multiplication, and division consistently and whether students transfer these skills to other mathematical situations and solutions. In this action research study, a classroom of 6th grade mathematics students was used to investigate how students solve word problems and how they determine which mathematical approach to use to solve a problem. It was discovered that many of the students read and re-read a question before they try to find an answer. Most students will check their answer to determine if it is correct and makes sense. Most students agree that mastering basic math facts is very important for problem solving and prefer mathematics that does not focus on problem solving. As a result of this research, it will be emphasized to the building principal and staff the need for a unified and focused curriculum with a scope and sequence for delivery that is consistently followed. The importance of managing basic math skills and making sure each student is challenged to be a mathematical thinker will be stressed.
Resumo:
In this action research study of two classrooms of 7th grade mathematics, I investigated how requiring written explanations of problem solving would affect students ability to problem solve, their ability to write good explanations, and how it would affect their attitudes toward mathematics and problem solving. I studied a regular 7th grade mathematics class and a lower ability 7th grade class to see if there would be any difference in what was gained by each group or any group. I discovered that there were no large gains made in the short time period of my action research. Some gains were made in ability to problem solve by my lower ability students over the 7 weeks that they did a weekly problem solving assignment. Some individual students felt that the writing had helped them in their problem solving because they needed to think and write each step. As a result of this research I plan to continue implementing writing in my classroom over the entire school year requiring a little more from students each time we problem solve and write.
Resumo:
In this action research study of my 5th grade mathematics class, I investigated how students’ understanding of math vocabulary impacts their understanding of the curriculum. I discovered math vocabulary plays an important role in a student’s ability to understand daily lessons, complete homework, discuss ideas in groups, take tests and be successful on achievement tests. A student’s ability to understand the words around him (or her) in math class seem very related to his or her ability to solve word problems. Word problems are what our national assessments are all about. I also discovered that direct instruction and support of math vocabulary increased test scores and confidence in students as test takers. As a result of this research, I plan to continue to find ways to emphasize the vocabulary used in our current math curriculum. This process will start at the beginning of the year. I will continue to look for strategies that promote math vocabulary retention in my students. And finally, I will share my findings with my colleagues, so my research can be used as part of our School Improvement Goals.
Resumo:
In this action research study of my classroom of 7th grade mathematics, I investigated whether the use of decoding would increase the students’ ability to problem solve. I discovered that knowing how to decode a word problem is only one facet of being a successful problem solver. I also discovered that confidence, effective instruction, and practice have an impact on improving problem solving skills. Because of this research, I plan to alter my problem solving guide that will enable it to be used by any classroom teacher. I also plan to keep adding to my math problem solving clue words and share with others. My hope is that I will be able to explain my project to math teachers in my district to make them aware of the importance of knowing the steps to solve a word problem.
Resumo:
In this action research study of my classroom of 8th grade mathematics, I investigated the use of daily warm-ups written in problem-solving format. Data was collected to determine if use of such warm-ups would have an effect on students’ abilities to problem solve, their overall attitudes regarding problem solving and whether such an activity could also enhance their readiness each day to learn new mathematics concepts. It was also my hope that this practice would have some positive impact on maximizing the amount of time I have with my students for math instruction. I discovered that daily exposure to problem-solving practices did impact the students’ overall abilities and achievement (though sometimes not positively) and similarly the students’ attitudes showed slight changes as well. It certainly seemed to improve their readiness for the day’s lesson as class started in a more timely manner and students were more actively involved in learning mathematics (or perhaps working on mathematics) than other classes not involved in the research. As a result of this study, I plan to continue using daily warm-ups and problem-solving (perhaps on a less formal or regimented level) and continue gathering data to further determine if this methodology can be useful in improving students’ overall mathematical skills, abilities and achievement.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.