881 resultados para Preferential attachment
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Resumo:
The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.
Resumo:
As business environments become even more competitive, project teams are required to make an effort to operate external linkages from within an organization or across organizational boundaries. Nevertheless, some members boundary-span less extensively, isolating themselves and their project teams from external environments. Our study examines why some members boundary-span more or less through the framework of group attachment theory. Data from 521 project-team members in construction and engineering industries revealed that the more individuals worry about their project team’s acceptance (group attachment anxiety), the more likely they are to perceive intergroup competition, and thus put more efforts into operating external linkages and resources to help their own teams outperform competitors. In contrast, a tendency to distrust their project teams (group attachment avoidance) generates members’ negative construal of their team’s external image, and thus fewer efforts are made at operating external linkages. Thus, project leaders and members with high group-attachment-anxiety may be best qualified for external tasks.
Resumo:
Experiments on the leaching of copper from chalcopyrite mineral by the bacterium Thiobacillus ferrooxidans show that, in the presence of adequate amounts of sulphide, iron-grown bacteria preferentially oxidise sulphur in the ore (through direct attachment) rather than ferrous sulphate in solution. At 20% pulp density, the leaching initially takes place by a predominantly direct mechanism. The cell density in the liquid phase increases, but the Fe2+ is not oxidised. However, in the later stages when less solid substrate is available and the cell density becomes very high, the bacteria start oxidising Fe2+ in the liquid phase, thus contributing to the indirect mechanism of leaching. Contrary to expectations, the rate of leaching increased with increasing particle size in spite of the decreasing specific surface area. This has been found to be due to increasing attachment efficiency with increase in particle size.
Resumo:
This paper examines the welfare implications of non-discriminatory tariff reforms by a subset of countries, which we term a non-preferential trading club. We show that there exist coordinated tariff reforms, accompanied by appropriate income transfers between the member countries, that unambiguously increase the welfare of these countries while leaving the welfare of non-members unaltered. In terms of economic policy implications, our results show that there exist regional, MFN-consistent arrangements that lead to Pareto improvements in world welfare.
Resumo:
This paper uses original survey data of the Great East Japan earthquake disaster victims to examine their decision to apply for the temporary housing as well as the timing of application. We assess the effects of victims’ attachment to their locality as well as variation in victims’ information seeking behavior. We additionally consider various factors such as income, age, employment and family structure that are generally considered to affect the decision to choose temporary housing as victims’ solution for their displacement. Empirical results indicate that, ceteris paribus, as the degree of attachment increases, victims are more likely to apply for the temporary housing but attachment does not affect the timing of application. On the other hand, the victims who actively seek information and are able to collect higher quality information are less likely to apply for the temporary housing and if they do apply then they apply relatively later.
Resumo:
A split-cassette arrangement has been incorporated in the Weissenberg camera for recording all reflections on the upper level photographs either as elongated or as contracted spots. This arrangement employs two semicylindrical cassettes which are separated by a horizontal plane. These half-cassettes are translated in opposite directions. A suitable split-cassette attachment has been constructed for the Unicam Weissenberg goniometer S-35 The subject of 'displaced-film' Weissenberg photograph is also discussed.
Resumo:
A successful plate-method for the preferential isolation of actinomycetes from soils is described. The principles underlying it are: (1) the inhibition of growth of non-sporulating bacteria by pre-incubation at a high temperature (110 C) for 10 min, and (2) limiting the spreading growth of sporeforming bacteria and fungi by the use of dried plates. The majority of the 191 species isolated by this method from 82 soil samples were shown to be pectinolytic.
Resumo:
By carrying out the reaction of appropriate metal compounds with Na2S in the presence of a tripodal cholamide-based hydrogel, nanotubes and nanorods of CdS, ZnS and CuS have been obtained. The nanostructures have been characterized by transmission electron microscopy and spectroscopic techniques. Evidence is presented for the assembly of short nanorods to form one-dimensional chains.
Resumo:
using two types of organic ligands having similar chemical structure but different physical properties and varying their dynamic population at the surface of zinc blende seed nanocrystals, self-assembled zinc blende semicircular-shaped bent nanowires of CdS are synthesized via a colloidal synthetic approach. It is found that the hydrophobic tail interaction of long-chain ligands puts strain on these thin nanowires (< 2 nm diameter) and bend them to some extent, forming strained nanowires.
Resumo:
Reaction of Cu2(O2CMe)4(H2O)2 with 1,2-diaminoethane(en) in ethanol, followed by the addition of NH4PF6, led to the formation of a covalently linked 1D polymeric copper(II) title complex showing alternating [Cu2(en)2(OH)22+] and [Cu2(O2CMe)4] units in the chain and the shortest Cucdots, three dots, centeredCu separation of 2.558(2) Å in the tetraacetato core.
Resumo:
Linker histone H1 binds preferentially the scaffold associated region (SAR) DNA elements that contain characteristic oligo dA . dT tracts. In the present study, we have compared the condensation brought about by histone H1 of a SAR DNA fragment in the histone spacer region of Drosophila melanogaster with that of a random DNA (pBR322 EcoRI-SalI) fragment by circular dichroism spectroscopy. The condensation of the SAR DNA fragment by histone H1 is 3-4-fold higher than that of the random DNA fragment. A 16-mer peptide, ATPKKSTKKTPKKAKK, the sequence that is present in the C-terminus of histone H1d, which has recently been shown to possess DIVA and chromatin condensing properties, also condenses the SAR DNA fragment preferentially in a highly cooperative manner. We have proposed a model for the dynamics of chromatin structure involving histone H1-SAR DNA interaction through SPKK containing peptide motifs and its competition by AT-hook peptides present in the nonhistone chromosomal proteins like HMG-I and HMG-Y.