975 resultados para Population Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Natural killer (NK) cells bridge the interface between innate and adaptive immunity and are implicated in the control of herpes simplex virus 2 (HSV-2) infection. In subjects infected with human immunodeficiency virus 1 (HIV-1), the critical impact of the innate immune response on disease progression has recently come into focus. Higher numbers of NK cells are associated with lower HIV-1 plasma viraemia. Individuals with the compound genotype of killer cell immunoglobulin-like receptor (KIR) 3DS1 and human leucocyte antigen (HLA)-Bw4-80I, or who have alleles of KIR3DL1 that encode proteins highly expressed on the NK cell surface, have a significant delay in disease progression. We studied the effect of HSV-2 co-infection in HIV-1-infected subjects, and show that HSV-2 co-infection results in a pan-lymphocytosis, with elevated absolute numbers of CD4+ and CD8+ T cells, and NK cells. The NK cells in HSV-2 co-infected subjects functioned more efficiently, with an increase in degranulation after in vitro stimulation. The number of NK cells expressing the activating receptors NKp30 and NKp46, and expressing KIR3DL1 or KIR3DS1, was inversely correlated with HIV-1 plasma viral load in subjects mono-infected with HIV-1, but not in subjects co-infected with HSV-2. This suggests that HSV-2 infection mediates changes within the NK cell population that may affect immunity in HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated and quantified by immunohistochemistry the population of cells expressing IL17 and Foxp3 in cutaneous and mucosal paracoccidioidomycosis lesions, associating these populations of cells with different presentations of granulomatous response. For this purpose, 61 skin biopsies and 55 oral mucosal biopsies were evaluated. Cells expressing IL17 were distributed in the inflammatory infiltrate in both groups of lesions and were found in the vessels` wall too. Foxp3+ expression was limited to the nuclei of lymphocytes in the inflammatory infiltrate. The distribution of IL17 was similar among the groups; however, Foxp3+ cells were increased in mucosal lesions that displayed compact granulomas. The results suggest that IL17 seems to play a role in paracoccidioidomycosis cutaneous and mucosal lesions, probably as secondary cells in the clearance of the fungal antigens. The presence of Foxp3+ cells both in skin and mucosa corroborates some previous researches that suggest the role of this group of cells in the modulation of local immune response. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oropouche (OROV) is a single-stranded RNA arbovirus of the family Bunyaviridae, genus Orthobunyavirus, which has caused over half a million cases of febrile illness in Brazil in the past 30 years. OROV fever has been registered almost exclusively in the Amazon region, but global warming, deforestation and redistribution of vectors and animal reservoirs increases the risk of Oropouche virus emergence in other areas. OROV causes a cytolytical infection in cultured cells with characteristic cytopathic effect 48 h post-infection. We have studied the mechanisms of apoptosis induced by OROV in HeLa cells and found that OROV causes DNA fragmentation detectable by gel electrophoresis and by flow cytometric analysis of the Sub-G1 population at 36 h post-infection. Mitochondrial release of cytochrome C and activation of caspases 9 and 3 were also detected by western blot analysis. Lack of apoptosis induced by UV-inactivated OROV reveals that virus-receptor binding is not sufficient to induce cell death. Results obtained in cells treated with chloroquine and cycloheximide indicated that viral uncoating and replication are required for apoptosis induction by OROV. Furthermore, treatment of the cells with pan-caspase inhibitor prevented OROV-induced apoptosis without affecting virus progeny production. The results show that OROV infection in vitro causes apoptosis by an intracellular pathway involving mitochondria, and activated by a mechanism dependent on viral replication and protein synthesis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient`s life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune hepatitis is an inflammatory chronic disease of the liver, which frequently results in cirrhosis. The present study aimed to verify the relationship between plasma cells and stellate cells in autoimmune hepatitis. Thirty-three pre-treatment, 11 post-treatment, and 10 normal liver biopsies were reviewed. Sirius Red staining (for semi-quantitative analysis of hepatic fibrosis) and immunohistochemistry were carried out: double staining for smooth muscle alpha-actin and plasma cell marker (for detection and localization of activated hepatic stellate cells and plasma cells, respectively); and single staining for glial fibrillary acid protein (for detection of hepatic stellate cells). We found an increase in the stellate cell population, mainly with an activated phenotype in autoimmune hepatitis, compared to the control group (liver specimens with no histological evidence of liver disease, obtained from patients undergoing hepatic resection for benign liver mass). A positive significant correlation was observed between stellate cells and scores of fibrosis (measured by Sirius Red) and the number of plasma cells. Additionally, there was a co-localization of plasma cells and activated stellate cells. We also observed a reduction in the number of plasma cells, hepatic stellate cells, and fibrosis in patients who had successfully been treated and had a second liver biopsy post-treatment. Our findings support that the number of plasma cells can be a surrogate marker for the severity of liver disease, reflecting the number of hepatic stellate cells and the amount of fibrosis. It remains to be seen if this is a result of a direct interaction between the plasma cells and hepatic stellate cells or the response to the same stimulus that affects both cellular types. (c) 2010 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1 beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1 beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1 beta-induced neutrophil migration. The neutrophil migration induced by IL-1 beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1 beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1 beta. The chemotactic activity of the supernatant of IL-1 beta-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1 beta-stimulated mast cells supernatant is due to the presence of IL-1 beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1 beta depends upon LTB4 released by macrophages and upon IL-1 beta and TNF alpha released by mast cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. The goal of this study was to determine whether the medial rectus muscles of patients with a history of medial rectus underaction or overaction show alterations in the process of satellite cell activation when compared with normal age-matched control muscles. METHODS. Medial rectus muscles were obtained with consent from adult patients undergoing surgical resection due to medial rectus underaction or overaction and were prepared for histologic examination by fixation and paraffin embedding. Control muscles were obtained from cornea donor eyes of adults who had no history of strabismus or neuromuscular disease. Cross sections were obtained and stained immunohistochemically for the presence of activated satellite cells, as identified by MyoD immunoreactivity, and the presence of the total satellite cell population, as identified by Pax7 immunoreactivity. The percentages of MyoD- and Pax7-positive satellite cells per 100 myofibers in cross section were calculated. RESULTS. As predicted from results in the literature, MyoD-positive satellite cells, indicative of activation, were present in both the control and resected muscles. In the underacting medial rectus muscles, the percentages of MyoD- and Pax7-positive satellite cells, based on the number of myofibers, were approximately twofold higher than the percentages in the control muscles. In the overacting medial rectus muscles, the percentage of MyoD- positive satellite cells was twofold less than in the control muscles, whereas the percentage of Pax7-positive satellite cells significantly increased compared with that in the control specimens. CONCLUSIONS. The presence of an increased number of activated satellite cells in the resected underacting medial rectus muscles and the decreased numbers of activated satellite cells in the overacting muscles was unexpected. The upregulation in the number of MyoD- positive satellite cells in underacting muscles suggests that there is potential for successful upregulation of size in these muscles, as the cellular machinery for muscle repair and regeneration, the satellite cells, is retained and active in patients with medial rectus underaction. The decreased number of activated satellite cells in overacting MR muscle suggests that factors as yet unknown in these overacting muscles are able to affect the number of satellite cells and/or their responsiveness compared with normal age-matched control muscles. These hypotheses are currently being tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In horses, stem cell therapies are a promising tool to the treatment of many injuries, which are common consequences of athletic endeavor, resulting in high morbidity and often compromising the performance. In spite of many advantages, the isolation of stem cells similar to human, from equine adipose tissue, occurred only recently. The aim of this study was to isolate equine adipose tissue-derived progenitor cells (eAT-PC), to characterize their proliferative potential, and to study their differentiation capacity before and after cryopreservation. The cells, isolated from horse adipose tissue, presented similar fibroblast-like cell morphology in vitro. Their proliferation rate was evaluated during 63 days (23 passages) before and after cryopreservation. After the induction of osteogenic differentiation, von Kossa staining and positive immunostaining studies revealed the formation of calcified extracellular matrix confirming the osteogenic potential of these cells. Adipogenic differentiation was induced using two protocols: routine and other one developed by us, while our protocol requires a shorter time (Oil Red O staining revealed significant accumulation of lipid droplets after 7 days). Chondrogenic differentiation was observed after 21 days of induced pellet culture, as evidenced by histological (toluidine blue) and immunohistochemistry studies. Our data demonstrate that eAT-PC can be easily isolated and successfully expanded in vitro while presenting significant proliferating rate. These cells can be maintained undifferentiated in vitro and can efficiently undergo differentiation at least into mesodermal derivates. These eAT-PC properties were preserved even after cryopreservation. Our findings classify eAT-PC as a promising type of progenitor cells that can be applied in different cell therapies in equines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation. hIDPSC and mouse blastocysts were used in this study. Fluorescence staining of hIDPSC and injection into mouse blastocysts, was performed. Histology, immunohistochemistry, fluorescence in situ hybridization and confocal microscopy were carried out. hIDPSC showed biological compatibility with the mouse host environment and could survive, proliferate and contribute to the inner cell mass as well as to the trophoblast cell layer after introduction into early mouse embryos (n = 28), which achieved the hatching stage following 24 and 48 h in culture. When transferred to foster mice (n = 5), these blastocysts with hIDPSC (n = 57) yielded embryos (n = 3) and foetuses (n = 6); demonstrating presence of human cells in various organs, such as brain, liver, intestine and hearts, of the human/mouse chimaeras. We verified whether hIDPSC would also be able to differentiate into specific cell types in the mouse environment. Contribution of hIDPSC in at least two types of tissues (muscles and epithelial), was confirmed. We showed that hIDPSC survived, proliferated and differentiated in mouse developing blastocysts and were capable of producing human/mouse chimaeras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design. Osteoblastic cells derived from vertebral lamina and iliac crest were isolated and cultured under the same conditions (osteogenic medium, pH, temperature, and CO(2) levels). Objective. To compare proliferation and expression of osteoblastic phenotype of cells derived from vertebral lamina and iliac grafting. Summary of Background Data. Many factors play a role in the success of bone graft in spinal fusion including osteoblastic cell population. Two common sources of graft are vertebral lamina and iliac crest, however, differences in proliferation and osteoblastic phenotype expression between cells from these sites have not been investigated. Methods. Cells obtained from cancellous bone of both vertebral lamina and iliac crest were cultured and proliferation was evaluated by direct cell counting and viability detected by Trypan blue. Alkaline phosphatase (ALP) activity was evaluated by thymolphthalein release from thymolphthalein monophosphate and matrix mineralization by staining with alizarin red S. Gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, osteoprotegerin, and receptor activator of NF-kB ligand was analyzed by real-time PCR. All comparisons were donor-matched. Results. Proliferation was greater at days 7 and 10 in cells from vertebral lamina compared with ones from iliac crest without difference in cell viability. ALP activity was higher in cells from vertebral lamina compared with cells from iliac crest at days 7 and 10. At 21 days, mineralized matrix was higher in cells derived from vertebral lamina than from iliac crest. At day 7, gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, receptor activator of NF-kB ligand, and osteoprotegerin was higher in cells derived from vertebral lamina compared with iliac crest. Conclusion. Cell proliferation and osteoblastic phenotype development in cells derived from cancellous bone were more exuberant in cultures of vertebral lamina than of iliac crest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.