908 resultados para Polyethylenes,Single Screw Extrusion,Multi-Screw Extruders,Reactive Extrusion,Peroxide Modification,Silane Grafting,Maleic Anhydride Grafting
Resumo:
The opportunity to supplement common cassava biscuits with a product of higher nutritional value meets consumer expectations. In this work it was studied the effects of process parameters and flaxseed addition on physical properties of expanded snacks. Extrusion process was carried out using a single screw extruder in a factorial central composite rotatable design with four factors: flaxseed flour percentage (0-20%), moisture (12-20%), extrusion temperature (90-130 °C) and screw speed (190-270). The effect of extrusion variables was investigated in terms of expansion index, specific volume, water absorption index, water solubility index, color parameters (L*, a* ,b*) and hardness. The data analysis showed that variable parameters of the extrusion process and flaxseed flour affected physical properties of puffed snacks. Among the experimental conditions used in the present study, expanded snack products with good physical properties can be obtained under the conditions of 10% flaxseed flour, 230 rpm screw speed, temperature of 90 °C and moisture of 12%.
Resumo:
This research had as objective to evaluate the effect of extrusion temperature and screw speed on physical and rheological properties, as well as, the sensory acceptance of cassava and passion fruit snacks produced in single-screw extruder. A central composite design with 11 treatments was used, considering as dependent variables: expansion index (EI), specific volume (SV), water solubility index (WSI), water absorption index (WAI), color (L*, a*, b*) and pasting properties (RVA). The products were flavored and analyzed for global acceptance. The results showed significant effects of temperature and screw speed on the dependent variables. The chocolate flavored snacks obtained good acceptance.
Resumo:
Short cooking time and ability to blend varieties of food ingredients have made extrusion cooking a medium for low-cost and nutritionally improved food products. The effect of moisture, extrusion temperature and amount of turmeric flour mixed with cassava flour on physical characteristic of puffed snacks was evaluated in this work. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Results showed effect of extrusion parameters on dependents variables. High expansion, low browning, low water solubility index, intermediate water absorption index and high crispness desirable characteristics to puffed snacks are obtained in conditions of 12% moisture, 5% turmeric flour, 105º C of temperature and 250 rpm of screw speed. These paper point to the potential still unexplored of the use of flours of cassava and turmeric as raw materials in the development of extruded puffed snacks.
Resumo:
The food industry is continually growing with new products becoming available every year. Extrusion combines a number of unit operations in one energy efficient rapid continuous process and can be used to produce a wide variety of snacks foods. The objective of this study was to evaluate the effect of extrusion temperature, screw speed, and amount of cassava leaf flour mixed with cassava starch on the physical properties of extruded snacks processed using a single screw extruder. A central composite rotational design, including three factors with 20 treatments, was used in the experimental design. Dependent variables included the expansion index, specific volume, color, water absorption index, and water solubility index. Among the parameters examined, the amount of cassava leaf flour and extrusion temperature showed significant effects on extruded snack characteristics. Mixtures containing 10% of cassava leaf flour extruded at 100 degrees C and 255 rpm shows favorable levels of expansion, color, water absorption index, and water solubility index.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.
Resumo:
Maleic anhydride (MA) and dicumyl peroxide (DCP) were used as crosslinking agent and initiator respectively for blending starch and a biodegradable synthetic aliphatic polyester using reactive extrusion. Blends were characterized using dynamic mechanical and thermal analysis (DMTA). Optical micrographs of the blends revealed that in the optimized blend, starch was evenly dispersed in the polymer matrix. Optimized blends exhibited better tensile properties than the uncompatibilized blends. Xray photoelectron spectroscopy supported the proposed structure for the starch-polyester complex. Variation in the compositions of crosslinking agent and initiator had an impact on the properties and color of the blends.
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.
Resumo:
Melt processing is a critical step in the manufacture of polymer articles and is even more critical when dealing with inhomogeneous polymer-clay nanocomposites systems. The chemical composition, and in particular the clay type and its organic modification, also plays a major contribution in determining the final properties and in particular the thermal and long-term oxidative stability of the resulting polymer nanocomposites. Proper selection and tuning of the process variable should, in principle, lead to improved characteristics of the fabricated product. With multiphase systems containing inorganic nanoclays, however, this is not straightforward and it is often the case that the process conditions are chosen initially to improve one or more desired properties at the expense of others. This study assesses the influence of organo-modified clays and the processing parameters (extrusion temperature and screw speed) on the rheological and morphological characteristics of polymer nanocomposites as well as on their melt and thermo-oxidative stability. Nanocomposites (PPNCs) based on PP, maleated PP and organically modified clays were prepared in different co-rotating twin-screw extruders ranging from laboratory scale to semi-industrial scale. Results show that the amount of surfactant present in similar organo-modified clays affects differently the thermo-oxidative stability of the extruded PPNCs and that changes in processing conditions affect the clay morphology too. By choosing an appropriate set of tuned process variables for the extrusion process it would be feasible to selectively fabricate polymer-clay nanocomposites, with the desired mechanical and thermo-oxidative characteristics. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Poly(methyl methacrylate)/clay nanocomposites were prepared by melt mixing using a montmorillonite-rich clay (MMT). The clay in natura was treated with acrylic acid to facilitate the dispersion in the polymer matrix. A masterbatch of PMMA/clay was prepared and combined with the pure PMMA and then subjected to extrusion process using singlescrew and twin-screw extruders followed by injection. Nanocomposites were processed with clay contents of 1, 3, 5 and 8 wt.%. The effect of shear processing on the morphology of the nanocomposites was evaluated by XRD, SEM and TEM. Thermal and mechanical properties of the nanocomposites were investigated through TGA, DSC, HDT, VICAT, tensile and impact tests, to evaluate the effect of the addition of clay to the PMMA matrix. Flammability tests were also conducted to investigate the effect of the addition of clay on the flame retardation properties. SEM images of the nanocomposites indicated the presence of clay agglomerates, which resulted in the reduction of properties such as thermal stability, mechanical strength and impact resistance, and increased the rate of burning for materials processed by both extrusion routes
Resumo:
In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Multi-wavelength picosecond pulses are demonstrated using a single monolithically integrated Multi-wavelength Grating Cavity (MGC) laser. This is achieved on two WDM wavelength channels at a repetition rate of 7.63 GHz.
Resumo:
Monte Carlo simulation was used to study the graft of maleic anhydride (MAH) onto linear polyethylene (PE-g-MAH) initiated by dicumyl peroxide (DCP). Simulation results revealed that major MAH monomers attached onto PE chains as branched graft at higher MAH content. However, at extremely low MAH content, the fraction of bridged graft was very close to that of branched graft. This conclusion was somewhat different from the conventional viewpoint, namely, the fraction of bridged graft was always much lower than that of branched graft under any condition. Moreover, the results indicated that the grafting degree increased almost linearly to MAH and DCP concentrations. On the other hand, it was found that the amount of grafted MAH dropped sharply with increasing the length of grafted MAH, indicating that MAH monomers were mainly attached onto the PE chain as single MAH groups or very short oligomers. With respect to the crosslink of PE, the results showed that the fraction of PE-(MAH)(n)-PE crosslink structure increased continuously, and hence the fraction of PE-PE crosslink decreased with increasing MAH concentration.