993 resultados para Plastic scrap - Recycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased levels of polybrominated diphenyl ethers (PBDEs) can occur particularly in dust and soil surrounding facilities that recycle products containing PBDEs. This may be the source of increased exposure for nearby workers and residents. To investigate, we measured PBDE levels in soil, office dust and blood of workers at the closest workplace (i.e. within 100m) to a large automotive shredding and metal recycling facility in Brisbane, Australia. The workplace investigated in this study was independent of the automotive shredding facility and was one of approximately 50 businesses of varying types within a relatively large commercial/industrial area surrounding the recycling facility. Concentrations of PBDEs in soils were at least an order of magnitude greater than background levels in the area. Congener profiles were dominated by larger molecular weight congeners; in particular BDE-209. This reflected the profile in outdoor air samples previously collected at this site. Biomonitoring data from blood serum indicated no differential exposure for workers near the recycling facility compared to a reference group of office workers, also in Brisbane. Unlike air, indoor dust and soil sample profiles, serum samples from both worker groups were dominated by congeners BDE-47, BDE-153, BDE-99, BDE-100 and BDE-183 and was similar to the profile previously reported in the general Australian population. Estimated exposures for workers near the industrial point source suggested indoor workers had significantly higher exposure than outdoor workers due to their exposure to indoor dust rather than soil. However, no relationship was observed between blood PBDE levels and different roles and activity patterns of workers on-site. These comparisons of PBDE levels in serum provide additional insight into the inter-individual variability within Australia. Results also indicate congener patterns in the workplace environment did not match blood profiles of workers. This was attributed to the relatively high background exposures for the general Australian population via dietary intake and the home environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear finite element analysis was carried out to investigate the viscoplastic deformation of solder joints in a ball grid array (BGA) package under temperature cycle. The effects of constraint on print circuit board (PCB) and stiffness of substrate on the deformation behaviour of the solder joints were also studied. A relative damage stress was adopted to analyze the potential failure sites in the solder joints. The results indicated that high inelastic strain and strain energy density were developed in the joints close to the package center. On the other hand, high constraint and high relative damage stress were associated with the joint closest to the edge of the silicon chip. The joint closest to the edge of the silicon chip was regarded as the most susceptible failure site if cavitation instability is the dominant failure mechanism. Increase the external constraint on the print circuit board (PCB) causes a slight increase in stress triaxiality (m/eq) and relative damage stress in the joint closest to the edge of silicon die. The relative damage stress is not sensitive to the Young’s modulus of the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railhead is perhaps the highest stressed civil infrastructure due to the passage of heavily loaded wheels through a very small contact patch. The stresses at the contact patch cause yielding of the railhead material and wear. Many theories exist for the prediction of these mechanisms of continuous rails; this process in the discontinuous rails is relatively sparingly researched. Discontinuous railhead edges fail due to accumulating excessive plastic strains. Significant safety concern is widely reported as these edges form part of Insulated Rail Joints (IRJs) in the signalling track circuitry. Since Hertzian contact is not valid at a discontinuous edge, 3D finite element (3DFE) models of wheel contact at a railhead edge have been used in this research. Elastic–plastic material properties of the head hardened rail steel have been experimentally determined through uniaxial monotonic tension tests and incorporated into a FE model of a cylindrical specimen subject to cyclic tension load- ing. The parameters required for the Chaboche kinematic hardening model have been determined from the stabilised hysteresis loops of the cyclic load simulation and imple- mented into the 3DFE model. The 3DFE predictions of the plastic strain accumulation in the vicinity of the wheel contact at discontinuous railhead edges are shown to be affected by the contact due to passage of wheels rather than the magnitude of the loads the wheels carry. Therefore to eliminate this failure mechanism, modification to the contact patch is essential; reduction in wheel load cannot solve this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While concrete recycling is practiced worldwide, there are many unanswered questions in relation to ultrafine particle (UFP; Dp<100nm) emissions and exposure around recycling sites. In particular: (i) Does recycling produce UFPs and in what quantities? (ii) How do they disperse around the source? (iii) What impact does recycling have on ambient particle number concentrations (PNCs) and exposure? (iv) How effective are commonly used dust respirators to limit exposure? We measured size-resolved particles in the 5-560 nm range at five distances from a simulated concrete recycling source and found that: (i) the size distributions were multimodal, with up to ~93% of total PNC in the UFP size range; and (ii) dilution was a key particle transformation mechanism. UFPs showed a much slower decay rate, requiring ~62% more distance to reach 10% of their initial concentration compared with their larger counterparts. Compared with typical urban exposure during car journeys, exposure decay profiles showed up to ~5 times higher respiratory deposition within 10 m of the source. Dust respirators were found to remove half of total PNC; however the removal factor for UFPs was only ~57% of that observed in the 100-560 nm size range. These findings highlight a need for developing an understanding of the nature of the particles as well as for better control measures to limit UFP exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that China and India have been recycling centers of WEEE, especially printed circuit boards, and that serious environmental pollution in these countries has been generated by improper recycling methods. After the governments of China and India banned improper recycling by the informal sector, improper recycling activities spread to other places. Then, these governments changed their policies to one of promoting proper recycling by introducing a scheme, under which E-waste recycling requires a license issued by the government. In this paper, the effectiveness of that license scheme is examined by means of an economic model. It can be shown that the license scheme can work effectively only if disposers of E-waste have a responsibility to sell E-waste to license holders. Our results run counter to the idea that international E-waste trade should be banned and provide an alternative solution to the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although science is generally assumed to be well integrated into rational decision-making models, it can be used to destabilise consultative processes, particularly when emotions are involved. Water policies are often seen as debates over technical and engineering issues, but can be highly controversial. Recycled water proposals, in particular, can create highly emotive conflicts. Through a case study regarding the rejection of recycled water proposals in the south-east Queensland, Australia, we explore the influence of science and emotions in contemporary water planning. We highlight the dangers inherent in promoting technical water planning issues at the expense of appropriate consideration of citizen concerns. Combining the science–policy interface and stakeholder engagement literatures, we advocate for collaborative decision-making processes that accommodate emotions and value judgements. A more collaborative stakeholder engagement model, founded on the principles of co-learning, has the potential to broaden the decision-making base and to promote better and more inclusive decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the Work Trashtopia was a fashion exhibition at Craft Queensland’s Artisan gallery showcasing outfits made entirely from rubbish materials. The exhibition was part of an on-going series by the Queensland Fashion Archives, called Remember or Revive. Maison Briz Vegas designers, Carla Binotto and Carla van Lunn created a dystopian beach holiday tableau referencing mid-century Californian and Gold Coast beach culture and style, and today’s plastic pollution of the world’s oceans. The display engaged a popular audience with ideas about environmental destruction and climate change while bringing twentieth and twenty-first century consumer and leisure culture into question. The medium of fashion was used as a means of amusement and provocation. The fashion objects and installation questioned current mores about the material value of rubbish and the installation was also a work of environmental activism. Statement of the Research Component The work was framed by critical reflections of contemporary consumer culture and research fields questioning value in waste materials and fashion objects. The work is situated in the context of conceptual and experimental fashion design practice and fashion presentation. The exhibited work transgressed the conventional production methods and material choice of designer fashion garments, for example, discarded plastic shopping bags were painstakingly shredded to mimic ostrich feathers. The viewer was prompted to reflect on the materiality of rubbish and its potential for transformation. The exhibition also sits in the context of culture jamming and contemporary activist practice. The work references and subverts twentieth century beach holiday culture, contrasting resort wear with a contemporary picture of plastic pollution of the oceans and climate change. Hawaiian style prints contained a playful and dark narrative of dying marine-life and the viewer was invited to take a “Greetings from Trashtopia” postcard depicting fashion models floating in oceans of plastic rubbish. This reflective creative practice sought to address the question of whether fashion made from recycled rubbish materials can critically and emotionally engage viewers with questions about contemporary consumer culture and material value. This work presents an innovative model of fashion design practice in which rubbish materials are transformed into designer garments and rubbish is placed centre stage in the public presentation of the designs. In overturning the traditional model of fashion presentation, the viewer is also given a deeper connection to the recycling process and complex ideas of waste and value. In 2015 two outfits from the exhibition were selected, along with works from three leading Australian fashion labels, and four leading New Zealand labels, for a commemorative ANZAC fashion collection shown at iD Dunedin Fashion Week. The show titled, “Together Alone, revisited” reprised an Australian and New Zealand fashion exhibition first held at the National Gallery of Victoria in 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X=ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 degrees C recorded a remarkably high value of 7 x 10(-3) Omega(-1) cm(-1), higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At -20 degrees C, the ionic conductivity of (100 -x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 x 10(-5)-4.5 x 10(-4) Omega(-1) cm(-1), approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y -> 0 for LiClO4-SN to a maximum of 0.4MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration. (c) 2008 Elsevier Ltd. All rights reserved.