960 resultados para Plasma-Renin Activity
Resumo:
The pathophysiological role of an increase in circulating vasopressin in sustaining global and regional vasoconstriction in patients with congestive heart failure has not been established, particularly in patients with hyponatraemia. To assess this further, 20 patients with congestive heart failure refractory to digoxin and diuretics were studied before and 60 minutes after the intravenous injection (5 micrograms/kg) of the vascular antagonist of vasopressin [1(beta-mercapto-beta,beta-cyclopentamethylene-propionic acid), 2-(0-methyl) tyrosine] arginine vasopressin. Ten patients were hyponatraemic (plasma sodium less than 135 mmol/l) and 10 were normonatraemic. In both groups of patients the vascular vasopressin antagonist did not alter systemic or pulmonary artery pressures, right atrial pressure, pulmonary capillary wedge pressure, cardiac index, or vascular resistances. Furthermore, there was no change in skin and hepatic blood flow in either group after the injection of the vascular antagonist. Only one patient in the hyponatraemic group showed considerable haemodynamic improvement. He had severe congestive heart failure and a high concentration of plasma vasopressin (51 pmol/l). Plasma renin activity, vasopressin, or catecholamine concentrations were not significantly changed in response to the administration of the vasopressin antagonist in either the hyponatraemic or the normonatraemic groups. Patients with hyponatraemia, however, had higher baseline plasma catecholamine concentrations, heart rate, pulmonary pressure and resistance, and lower hepatic blood flow than patients without hyponatraemia. Plasma vasopressin and plasma renin activity were slightly, though not significantly, higher in the hyponatraemic group. Thus the role of vasopressin in sustaining regional or global vasoconstriction seems limited in patients with congestive heart failure whether or not concomitant hyponatraemia is present. Vasopressin significantly increases the vascular tone only in rare patients with severe congestive heart failure and considerably increased vasopressin concentrations. Patients with hyponatraemia do, however, have raised baseline catecholamine concentrations, heart rate, pulmonary arterial pressure and resistance, and decreased hepatic blood flow.
Resumo:
In 6 hypertensive patients with terminal renal failure maintained on hemodialysis, the effects of 'salt subtraction' and of sequential ultrafiltrating were evaluated. Following each of 3 weekly hemodialysis sessions, salt subtraction was carried out by ultrafiltrating 1 liter and simultaneously infusing an equal volume of 5% dextrose. This resulted in a net sodium loss without hypovolemia. After a 2-week period of this procedure, the blood pressure prior to dialysis was lower (156/76 +/- 12/5 mm Hg) than after a comparable number of sequential ultrafiltration sessions (181/88 +/- 10/6 mm Hg; mean +/- SEM). This difference was not statistically significant. At the same time, body weight was comparable at 64.4 +/- 3 and 64.7 +/- 4 kg, respectively. Neither plasma renin activity nor plasma catecholamines responded with a clear increase to either procedure. The limited effect on blood pressure and the renin system of a marked sodium removal during salt subtraction suggests that sodium must still be present in excess in these patients. The procedure of salt subtraction appears safe and subjectively well tolerated, but it can probably not be used as the sole means of decreasing total body sodium without associating dietary measures to reduce sodium intake.
Resumo:
About 3% of our hypertensive patients have high blood pressure induced by corticosteroids. Muscle weakness, tiredness, polyuria and polydipsia may indicate hypokalaemia. Hypokalaemic hypertension in the presence of a low plasma renin activity is the typical finding of corticosteroid hypertension. The most frequent cause of corticosteroid hypertension is primary aldosteronism (Conn's syndrome) due to an adrenal adenoma or bilateral hyperplasia of the adrenal glands. The plasma concentration of aldosterone and the ratio between plasma aldosterone and renin concentrations are high, and the kaliuresis exceeds 30 mmol/24 h in the presence of hypokalaemia. Adrenal carcinomas are rare and very malignant. The localization of an adrenal tumour is made by computer tomography (CT-scan) or nuclear magnetic resonance imaging and by measurement of the aldosterone/cortisol concentrations in the adrenal venous blood. Adenomas are removed under laparoscopy, and adrenal hyperplasias are treated with spironolactone (50-400 mg daily) or amiloride (5-30 mg daily). In rare cases (<1%), excessive stimulation of the mineralocorticoid receptor is due to cortisol (apparent mineralocorticoid excess, Cushing's disease, liquorice, or hereditary deficiency of 11beta-hydroxysteroid dehydrogenase) or to a chimeric gene coding for 11beta-hydroxylase (CYP11B1/CYP11B2). In these rare cases, the synthesis of aldosterone is under the control of the adrenocorticotrophic hormone, so treatment with glucocorticoids (dexamethasone 0.25-1.0 mg daily) is therefore possible (glucocorticoid-remediable aldosteronism). Excessive deoxycorticosterone (DOC) causes the same symptoms and signs as hyperaldosteronism. Excessive DOC is found in patients with adrenal tumours that secrete DOC, in those with hereditary or acquired disorders with dysfunctioning glucocorticoid receptors, or in those with congenital hyperplasia of the adrenal glands (deficiency of 17alpha-hydroxylase or 11beta-hydroxylase). Liddle's syndrome is a constitutive hyperactivity of the transepithelial transport of sodium, which under normal conditions is controlled by the mineralocorticoid receptor. Plasma renin and aldosterone concentrations are suppressed and the plasma potassium concentration may be normal. In contrast, plasma aldosterone and renin concentrations are increased in patients with hypokalaemic hypertension which represents secondary aldosteronism. The increased aldosterone is the consequence of stimulated renin activity due to renal or renovascular or other disorders, antihypertensive drugs or other medications. In conclusion, a work-up for corticosteroid-induced hypertension is indicated in patients with hypokalaemic hypertension and in those with severe hypertension even in the absence of hypokalaemia, and in hypertensive patients with a family history of cardiovascular diseases.
Resumo:
The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.
Resumo:
The effect of a synthetic atrial natriuretic peptide (h-ANP, 25 amino acids, Wy-47.663) on blood pressure, renal electrolyte excretion, plasma catecholamines, and plasma renin activity was studied in nine patients with cirrhosis of the liver and ascites. The peptide was infused intravenously at 24-h intervals for 2 h in groups of four patients each in two different doses (0.015 and 0.075 micrograms/kg/min or 0.06 and 0.3 micrograms/kg/min). A control experiment with the vehicle was performed in all patients. In three patients h-ANP (1 and 2 micrograms/kg i.v.) was administered as an intravenous bolus injection. Consistent falls in blood pressure were observed during h-ANP infusion only with the two higher doses. The two lower infused doses induced a consistent natriuresis; this renal response was abolished when the two larger doses were used. When given as a bolus, h-ANP had a natriuretic effect comparable to that of the two lower doses of infused h-ANP. Plasma catecholamines and plasma renin activity increased during infusion of the two higher doses of h-ANP. It thus appears that in patients with cirrhosis and ascites, the natriuretic effect of infused h-ANP decreases rather than increases when the doses are raised. Bolus administration of h-ANP may be less prone to trigger counterbalancing responses and side-effects.
Resumo:
We investigated the short-term and sustained hormonal and renal effects of angiotensin II (Ang II) receptor blockade in normotensive healthy volunteers. Twenty-four subjects maintained on a fixed sodium diet were randomized to receive for 8 days a placebo or 10 or 50 mg doses of the Ang II antagonist irbesartan (SR 47436, BMS 186295) according to a double-blind, parallel group design. Plasma renin activity, plasma immunoreactive Ang II and aldosterone levels, blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 8 hours after the first and eighth administration of each dose of irbesartan or placebo. Ang II receptor blockade with irbesartan induced a dose-dependent compensatory increase in plasma renin activity and plasma angiotensin levels and a significant decrease in plasma aldosterone levels. The compensatory rise in plasma renin activity and Ang II levels was more pronounced on day 8, reflecting a long duration of the blocking effect of irbesartan. Irbesartan induced small changes in blood pressure and did not significantly modify renal blood flow and glomerular filtration rate. However, a significant decrease in filtration fraction was observed during receptor blockade on days 1 and 8. The tubular effects of irbesartan were characterized by a dose-dependent increase in sodium and chloride excretions. Interestingly, the cumulative natriuretic response to Ang II receptor blockade was similar on days 1 and 8, suggesting that in these subjects, renal Ang II receptors are not blocked over 24 hours during repeated administration even though this antagonist has a long duration of action (t1/2 of 15 to 17 hours).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
1. The effect of acute inhibition of angiotensin-converting enzyme by captopril (50 mg) on renal haemodynamics and function was assessed in nine patients with essential hypertension on unrestricted sodium intake (n = 8) or low sodium diet (n = 1). 2. Captopril induced a rapid and significant decrease in arterial pressure, which was maximal within 60 min. 3. Effective renal plasma flow (ERPF) increased, glomerular filtration rate (GFR) did not change and filtration fraction (FF) decreased after captopril. No change in sodium excretion and a decrease in urinary potassium occurred. 4. In the patient on low sodium diet, captopril induced striking increases in GFR and ERPF (64 and 106% respectively). 5. The logarithm of baseline plasma renin activity was positvely correlated with the change in ERPF and negatively correlated with changes in FF and renal resistance. 6. The results indicate that in patients with essential hypertension angiotensin participates actively in the maintenance of renal vascular tone at the efferent arteriolar level. A possible influence of kinins remains to be defined.
Resumo:
Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.
Resumo:
The clinical pharmacology of a synthetic rat atrial natriuretic peptide (rANP) was evaluated in normal volunteers. During a dose-ranging study at 1-40 micrograms/min we observed a dose-dependent decrease in mean intra-arterial blood pressure, an acceleration of the heart rate and a transient increase in blood flow to the skin. During a 4-h constant-dose infusion at 0.5 and 5.0 micrograms/min, inulin clearance remained unchanged but there was a dose-related fall in paraaminohippurate (PAH) clearance and an increase in the filtration fraction. Urinary excretion of sodium, chloride and calcium increased in a dose-related fashion, but with the high dose the excretion curve had a bell-shape. No change in plasma renin activity, angiotensin II and aldosterone was observed during the rANP infusion despite the excretion of large amounts of sodium and a blood pressure reduction with the high dose. Indocyanine green clearance, a measure of hepatic blood flow, was significantly decreased by a 2-h rANP infusion at 1.0 microgram/min. In normal volunteers, therefore, rANP induced vasodilation and blood pressure reduction, a decrease in renal and hepatic blood flow and a natriuretic and transient diuretic effect without activation of the renin-angiotensin-aldosterone system.
Resumo:
A nonhypotensive dose of endotoxin was administered to normal conscious rats to evaluate the vascular and humoral effects of endotoxemia per se. Mean blood pressure and heart rate remained stable during the 45 min infusion of Escherichia coli endotoxin (0.01 mg/min). However, a marked increase in plasma renin activity (4.2 +/- 0.48 vs. 30.2 +/- 6 ng.ml-1.h-1, mean +/- SE, P less than 0.01), plasma epinephrine (0.112 +/- 0.04 vs. 1.71 +/- 0.5 ng/ml, P less than 0.01), and plasma norepinephrine (0.269 +/- 0.028 vs. 1.3 +/- 0.2 ng/ml, P less than 0.001) was observed during infusion in endotoxin-treated rats when compared with the vehicle-treated animals. In addition, the blood pressure response to exogenous norepinephrine was significantly reduced during nonhypotensive endotoxemia. Significant changes in regional blood flow distribution, as assessed by radiolabeled microspheres, were observed in endotoxemic rats; in particular a decrease in renal blood flow (7.39 +/- 0.43 vs. 5.97 +/- 0.4 ml.min-1.g-1, P less than 0.05) and an increase in coronary blood flow (5.01 +/- 0.38 vs. 6.44 +/- 0.33 ml.min-1.g-1, P less than 0.01) were found. The role of prostaglandins in the vascular and humoral alterations induced by nonhypotensive endotoxemia was also examined. Pretreatment with indomethacin (5 mg) prevented the increase in plasma renin activity as well as plasma catecholamine levels. On the contrary, the decreased vascular reactivity and the reduction in renal blood flow observed during endotoxemia were not affected by prostaglandin synthesis inhibition. Thus significant vascular and humoral changes have been found during endotoxemia even in absence of hypotension.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.
Resumo:
Background: Cocoa is rich in flavonoids, has anti-oxidative properties and increases the bioavailability of nitric oxide (NO). Adequate renal tissue oxygenation is crucial for the maintenance of renal function. The goal of this study was to investigate the effect of cocoa-rich dark chocolate (DC) on renal tissue oxygenation in humans, as compared to flavonoid-poor white chocolate (WC). Methods: Ten healthy volunteers with preserved kidney function (mean age ± SD 35 ± 12 years, 70% women, BMI 21 ± 3 kg/m2) underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) before and 2 hours after the ingestion of 1 g/kg of DC (70% cocoa). Renal tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* (= 1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. Eight participants also underwent BOLD-MRI at least 1 week later, before and 2 hours after the intake of 1 g/kg WC. Results: The mean medullary R2* was lower after DC intake compared to baseline (28.2 ± 1.3 s-1 vs. 29.6 ± 1.3 s-1, p = 0.04), whereas cortical and medullary R2* values did not change after WC intake. The change in medullary R2* correlated with the level of circulating (epi)catechines, metabolites of flavonoids (r = 0.74, p = 0.037), and was independent of plasma renin activity. Conclusion: This study suggests for the first time an increase of renal medullary oxygenation after intake of dark chocolate. Whether this is linked to flavonoid-induced changes in renal perfusion or oxygen consumption, and whether cocoa has potentially renoprotective properties, merits further study.
Resumo:
Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.
Resumo:
1. Captopril or SQ 14 225, administered orally twice a day, reduced the blood pressure of hypertensive patients whatever their clinical diagnosis and even when their plasma renin activity was 'normal' or low. 2. Long-term administration of captopril, either alone or together with diuretics, provides a powerful new tool with which to treat ambulatory hypertensive patients. 3. The renin system may play an important role in maintaining blood pressure in a majority of hypertensive patients.
Resumo:
Through its classic effects on sodium and potassium homeostasis, aldosterone, when produced in excess, is associated with the development of hypertension and hence with higher cardiovascular and renal risk. In recent years, experimental and epidemiologic data have suggested that aldosterone also may be linked to high cardiovascular risk independently of its effects on blood pressure. Thus, aldosterone has been associated with obesity and metabolic syndrome in selected populations, and these associations may further contribute to the higher cardiovascular risk of subjects with elevated aldosterone levels. Moreover, aldosterone has been reported to promote inflammation, oxidative stress, and fibrosis in a number of tissues. Clinical evidence indicates that patients with primary hyperaldosteronism have a higher risk of developing cardiovascular and renal complications than patients with essential hypertension who have the same level of blood pressure. Aldosterone receptor blockade has been shown to lower cardiovascular mortality after myocardial infarction and in patients with congestive heart failure. Some studies have also demonstrated that aldosterone blockade could have a favorable impact on the progression of renal disease. However, prospective interventional trials are needed to further evaluate the impact of blockade of aldosterone on cardiovascular risk.