920 resultados para Plasma immersion ion implantation and deposition
Resumo:
Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 angstrom/min to 19 angstrom/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN.H films mechanically more resistant and altered their hydrophobic character.
Resumo:
Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed. © 2009 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
In this work, RVC samples were treated by plasma immersion ion implantation (PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 minutes. Nitrogen, atmospheric air and H2:N2 mixture were employed as plasma sources. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application
Resumo:
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The thesis provides an overall review and introduction to amorphous semiconductors, followed by a brief discussion on the important structural models proposed for chalcogenide glasses and their electrical, optional and thermal properties. It also gives a brief description of the Physics of thin films, ion implantation and Photothermal Deflection Spectroscopy. A brief description of the experimental setup of a photothermal deflection spectrometer and the details of the preparation and optical characterization of the thin film samples. It deals with the employment of the subgap optional absorption measurement by PDS to characterize the defects, amorphization and annealing behavior in silicon implanted with B+ ions and the profiles of ion range and vacancy distribution obtained by the TRIM simulation. It reports the results of all absorption measurements by PDS in nitrogen implanted thin film samples of Ge-Se and As-Se systems