946 resultados para Planar waveguides


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bloch modes can be excited in planar array due to its periodic lateral refractive index. The power coupled into each eigenmode of the array waveguides is calculated through the overlap integrals of the input field with the eigenmode fields of the coupled infinite array waveguides projected onto the x-axis. Low losses can be obtained if the transition from the array to the free propagation region is adiabatic. Due to the finite resolution of lithographic process the gap between the waveguides will stop abruptly, however, when the waveguides come into too close together. Calculation results show that losses will occur at this discontinuity, which are dependent on the ratio of the gap between the waveguides and grating pitch and on the confinement of field in the array waveguides. Tapered waveguides and low index contrast between the core and cladding layers can lower the transmitted losses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Symmetrically tapered planar IR waveguides have been fabricated by starting with a ZnS coated concave piece of single-crystal Ge, embedding it in an epoxide resin as a supporting substrate, and then grinding and polishing a planar surface until the thickness at the taper minimum is <30 μm. Such tapering is expected to enhance a waveguide's sensitivity as an evanescent wave sensor by maximizing the amount of evanescent wave energy present at the thinnest part of the waveguide. As predicted by theory, the surface sensitivity, i.e., the absorbance signal per molecule in contact with the sensing region, increases with decreasing thickness of the tapered region even while the total energy throughput decreases. The signal-to-noise ratio obtained depends very strongly on the quality of the polished surfaces of the waveguides. The surface sensitivity is superior to that obtained with a commercial Ge attenuated total reflection (ATR) accessory for several types of sample, including thin films (<10 ng) and small volumes (<1 μL) of volatile solvents. By using the waveguides, light-induced structural changes in the protein bacteriorhodopsin were observable using samples as small as ∼50 pmol (∼1 μg). In addition, the waveguide sensors can reveal the surface compositions on a single human hair, pointing to their promise as a tool for forensic fiber analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental measurements on Silicon-on-insulator (SOI) photonic crystal slabs with an active layer containing Er3+ ions-doped Silicon nanoclusters (Si-nc), showing strong enhancement of 1.54 μm emission at room temperature. We provide a systematic theoretical analysis to interpret such results. In order to get further insight, we discuss experimental data on the guided luminescence of unpatterned SOI planar slot waveguides, which show enhanced light emission in transverse-magnetic (TM) modes over transverse-electric (TE) ones. ©2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of pulse waves in coplanar waveguides (CPWs) is investigated, and these CPWs are assumed to be fabricated on a single -layer low- temperature co-fired ceramic (LTCC) substrate. The input pulse wave can be a Gaussian pulse or a sinusoldally modulated Gaussian pulse. Based on the standard Galerkin 's method in the spectral domain, combined with fast Fourier transform (FFT), the pulse waveform and delay in CPWs are demonstrated and compared for a second plate, oriented orthogonally to the primary planar element, thus producing a crossed planar monopole (CPM), which is simpler to produce and has lower cost than a conical monopole. In this paper, further measurements have been made on this element

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present the concept of planar polymer photonic waveguides for the health monitoring of aerospace structures. Here a polymer layer is deposited onto the material/structure to be monitored. Within the polymer layer, waveguides are created after deposition. These waveguides can then be used as 'optical fibres' for optical fibre sensing methodologies. In investigating the use of polymer photonic waveguides the question to be answered is: does the strain in the test material transfer to the polymer layer, such that the value to be measured optically is reliable and indicative of the true strain in the test structure? To answer this question we have conducted a preliminary structural analysis with finite element analysis, utilising ANSYS. A simple aluminium cantilever was used as the test structure, and layers of polyethylene with different thicknesses were added to this. Result show that the thinner the layer of polymer, the more accurate the measured strain will be. For a 100um coating, the difference is strain was observed to be on the order of 3.3%. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the material birefringence in a polymer strip waveguide which originates from thermal stress during the fabrication process. The stress is estimated through a comprehensive numerical study based on a realistic finite element model. The characteristics of birefringence are obtained in a generalized form and expressed by an empirical formula, which is applicable to various polymer materials. The developed formula can be employed to specify the photo-elastic birefringence of a polymer strip channel only by knowing the birefringence in its planar film. This will eliminate the necessity of extensive numerical analysis of thermal stress in such polymer waveguides, and accordingly help the management of stress-induced effects efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel single-step technique for the apodization of planar waveguide Bragg gratings based on the polarization control method is proposed. First results are presented, showing successful side-lobe suppression in the reflection spectrum of the gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.