994 resultados para Pinus tropical
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity? The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to determining the anatomical structure of wood, through methodology of histology and X-ray densitometry, of resin-tapped and not resin-tapped Pinus caribaea var. hondurensis trees samples, of three diameter classes. Pine trees, in forest plantation established in 1969, in the Ecological Experimental Station of Itirapina, from the Forestry Institute of Sao Paulo State, were measured and stratified into three classes of trunk diameter. The pine trees were resin-tapped since 2004, with the opening of two simultaneous and opposing panels. Sixty samples of pine wood trees were extracted from the tree trunk through a non-destructive method and in the laboratory. Tree rings were determined in the laboratory and wood apparent density by X-ray densitometry. The test results showed that: (i) false tree rings occur in the early wood and late wood of the tree rings due to climate change; (ii) the X-ray densitometry allowed the demarcation of the tree rings limits; (iii) the wood apparent density average was significantly different between the trees in high class diameter and in the medium-low class; (iv) the wood characteristics from the resin-tapped and non resin-tapped faces did not show significant differences.
Resumo:
This study aimed at evaluating the mechanical, physical and biological properties of laminated veneer lumber (LVL) made from Pinus oocarpa Schiede ex Schltdl (PO) and Pinus kesiya Royle ex Gordon (PK) and at providing a nondestructive characterization thereof. Four PO and four PK LVL boards from 22 randomly selected 2-mm thickness veneers were produced according to the following characteristics: phenol-formaldehyde (190 g/m(2)), hot-pressing at 150A degrees C for 45 min and 2.8 N/mm(2) of specific pressure. After board production, nondestructive evaluation was conducted, and stress wave velocity (v (0)) and dynamic modulus of elasticity (E (Md) ) were determined. The following mechanical and physical properties were then evaluated: static bending modulus of elasticity (E (M) ), modulus of rupture (f (M) ), compression strength parallel to grain (f (c,0)), shear strength parallel to glue-line (f (v,0)), shear strength perpendicular to glue-line (f (v,90)), thickness swelling (TS), water absorption (WA), and permanent thickness swelling (PTS) for 2, 24, and 96-hour of water immersion. Biological property was also evaluated by measuring the weight loss by Trametes versicolor (Linnaeus ex Fries) Pilat (white-rot) and Gloeophyllum trabeum (Persoon ex Fries.) Murrill (brown-rot). After hot-pressing, no bubbles, delamination nor warping were observed for both species. In general, PK boards presented higher mechanical properties: E (M) , E (Md) , f (M) , f (c,0) whereas PO boards were dimensionally more stable, with lower values of WA, TS and PTS in the 2, 24, and 96-hour immersion periods. Board density, f (v,0), f (v,90) and rot weight loss were statistically equal for PO and PK LVL. The prediction of flexural properties of consolidated LVL by the nondestructive method used was not very efficient, and the fitted models presented lower predictability.
Resumo:
Mahogany trees, Swietenia macrophylla, occur in open rainforest, semi deciduous and deciduous and dense rainforest of Peruvian Amazonian tropical forest. They occur, preferentially, in areas with a defined dry season, with typical phenology and seasonal variation activity, forming distinct tree-rings. The present work had as aim to determine the wood density radial variation of 14 mahogany trees, of two populations of the Peruvian Amazonian tropical forest, through the X-ray densitometry and to evaluate their application as methodology, compared to the classic method of measurement table, for the determination of the treering width. The radial wood apparent density of the trees profiles rendered it possible to delimit the areas of juvenile-adult wood and of the heartwood-sapwood, relative to the anatomical structure and chemical composition differences, due to the extractives and the vessels obstruction by tyloses. The mean, minimum and maximum wood apparent density of the mahogany trees for the Populations A and B were of 0.70; 0.29; 1.01 g.cm(-3) and 0.81; 0.29; 1.19 g.cm(-3), respectively. The analysis of the variance and mean test indicate differences of mean wood density among the mahogany trees of each population, probably due to the age of the trees. There was no correlation between mean wood density of mahogany trees among the two populations, as well as, between the tree-ring width and the respective mean density. The X-ray densitometry technique is an important tool in the evaluation of the radial variation of wood apparent density and the delimitation of tree-ring boundaries, with correlations of 0.94 and 0.93 in relation to measurement table, for each sampled population.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Maize breeding programmes in Brazil and elsewhere seek reliable methods to identify genotypes resistant to Phaeosphaeria leaf spot. The area under the disease progress curve (AUDPC) is an accurate method to evaluate the severity of foliar diseases. However, at least three data points are required to calculate the AUDPC, which is unfeasible when there are thousands of genotypes to be assessed. The aim of this work was to estimate the heritability of disease resistance, evaluate disease severity at different times using a nine-point scale in comparison to the AUDPC, and establish the most suitable phenological period for disease assessment. A repeated experiment was conducted in a 11 x 11 lattice experimental design with three replications. Disease assessments were carried out at flowering, 15 and 30 days post-anthesis for the parental lines DS95, DAS21, the F1 generation and 118 F2:3 progenies. Then, the AUDPC was obtained and results compared with the single-point evaluations used to calculate it. Individual and joint analyses of variance were conducted to obtain heritabiliy estimates. The assessments performed after the flowering stage gave higher estimates of heritability and correlation with AUDPC. We concluded that one assessment between the 15th and 30th day after flowering could provide enough information to distinguish maize genotypes for their resistance to Phaeosphaeria leaf spot under tropical conditions.
Resumo:
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F(2) population. Two-hundred and fifty six F(2) plants were genotyped with 143 microsatellite markers and their F(2:3) progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance x dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.
Resumo:
Natural forest remnants have been set as seed production fields to supply seeds of native tree species for tropical forest restoration, but the effect of different forest types on seed production has not been accessed to date for palm species. In this work, we studied seed development, yield, and quality of two palm species in different tropical forest types in SE Brazil. Seed production of palmiteiro (Euterpe edulis) and queen-palm (Syagrus romanzoffiana), which are largely used in restoration efforts due to their importance for vertebrate frugivores, were studied in natural remnants of Atlantic Rainforest, Restinga Forest, Seasonally Dry Forest, and Cerrado Forest. We studied seed development, yield, size, and germination of seed lots produced in some of these forest types, including seeds harvested in 2008, 2009, and both years. Seed yield and quality, as well as seed dry mass in 2009, were higher for palmiteiro seeds produced in the Atlantic Rainforest, while queen-palm seeds produced at the Restinga Forest showed the higher mass and yield, but the lowest physiological potential. Consequently, these natural differences of seed yield and quality have to be taken into account for establishing standards for seed commercialization and analysis, seed pricing, and seedling production in forest nurseries.
Resumo:
Aluminum toxicity is one of the major soil factors limiting root growth in acidic soils. Because of the increase in organic matter content in the upper few centimeters of soils under no-till systems (NTS), most Al in soil solution may be complexed to dissolved organic C (DOC), thus decreasing its bioavailability. The aim of this study was to evaluate the effects of surface liming on Al speciation in soil solution in Brazilian sites under NTS. Field experiments were performed in two regions with contrasting climates and levels of soil acidity: Rondonopolis, Mato Grosso State, on a Rhodic Haplustox, and Ponta Grossa, Parana State, on a Typic Hapludox. The treatments consisted of a control and three lime rates, surface applied to raise the base saturation to 50, 70, and 90%. Soil solution was obtained at soil water equilibrium (1:1 w/w soil/water ratio). The effects of surface liming on soil chemical attributes and on the composition of the soil solution were dependent on weather conditions, time under NTS, and soil weathering. Most Al in soil solution was complexed to DOC, representing about 70 to 80% of the total Al at pH <5.0, and about 30 to 4096 at pH >5.0. Under pH 5.5, the results were closely correlated with the solubility line for amorphous Al. Organic complexes may control Al(3+) release into soil solution at pH <5.5. Results suggest that in areas under NTS for a long period of time, Al toxicity might decrease due to its complexation to high-molecular-weight organic compounds.
Resumo:
Mehlich-1, resin-HCO(3), and Pi tests were used to assess available P in an acid tropical Oxisol in Brazil treated with gypsum, which has been preferred over lime to ameliorate the Al toxicity in the subsoil. The soil was incubated in the laboratory at rates up to 75 g kg(-1) of phosphogypsum (PG) containing 0.3% total P, natural gypsum, or reagent-grade gypsum, and up to 100 mg P kg(-1) as triple superphosphate (TSP) or phosphate rock (PR). In the greenhouse, two consecutive maize crops were grown on the soil treated with 50 mg P kg(-1) of TSP and PG rates up to 75 g kg(-1). The results of the incubation study showed that Mehlich-P and Pi-P increased with increasing PG rate for the treatments of TSP, PR, and control. Resin-HCO(3) underestimated available P from TSP and PR because of the reaction between resin-HCO(3) and gypsum. Mehlich-1 overestimated available P from PR compared with TSP because of an excessive dissolution of PR by the strongly acidic Mehlich-1. Pi underestimated available P from PR in the treatments of natural and reagent-grade gypsum because of Ca common-ion effect from gypsum on depressing PR dissolution. The results in terms of the effect of PG on available P are similar in both incubation and greenhouse studies. Both Mehlich-P and Pi-P correlated well with P uptake by maize, whereas resin-P did not.
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.
Resumo:
This study investigated the ionic speciation of reclaimed urban wastewater (RWW), and the impact of increasing RWW irrigation rates on soil properties and plant nutrition under field conditions. Most RWW elements (>66%) are readily available as NH(4)(+), Ca(2+), Mg(2+), K(+), SO(4)(2-), Cl(-), H(3)BO(3), Mn(2+) and Zn(2+), but in imbalanced proportion for plant nutrition. Lead, Cd, Cr and Al in RWW are mostly bounded with DOM or OH. Irrigation with RWW decreased soil acidity, which is beneficial to the acidic tropical soil. Although RWW irrigation builds exchangeable Na(+) up, the excessive Na(+) was leached out of the soil profile after a rainy summer season (>400 mm). Benefits of the disposal of RWW to the soil under tropical conditions were discussed, however, the over irrigation with RWW (>100% of crop evapotranspiration) led to a nutritional imbalance, accumulating S and leading to a plant deficiency of P and K. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.