170 resultados para Piezooptics tensors
Resumo:
Single crystals of calcium hydrazine carboxylate, monohydrate have been studied by ESR of Mn2+ doped in the calcium sites. X-band ESR indicated a large crystal field splitting necessitating experiments at Q band. The analysis shows two magnetically inequivalent (but chemically equivalent) sites with g(xx) = 2.0042+/-0.0038, g(yy) = 2.0076 +/-00029, g(zz) =2.0314+/-0.001, A(zz) = 0.0099+/-0.0002 cm(-1), A(xx) = 0.0099+/-0.0002 cm(-1), A(yy) = 0.0082+/-0.0002cm(-1), D = 3/2D(zz) = 0.0558+/-0.0006cm(-1), and E = 1/2(D-xx-D-yy) = 0.0127+/-0.0002 cm(-1).One of the principal components of the crystal field, (D-zz), is found to be along the Ca<->Ca direction in the structure and a second one, (D-xx), along the perpendicular to the plane of the triangle formed by three neighbouring calciums. The A tensor is found to have an orientation different from that of the g and D tensors reflecting the low symmetry of the Ca2+ sites.
Resumo:
The results of an NMR study of the interaction of quinazoline with iodine in the nematic phase indicate the formation of at least two different types of charge-transfer complexes. Significant changes in the molecular geometry of the quinazoline moiety were observed as a result of complexation with iodine. Detailed information on the formation of the charge-transfer complexes was derived from the changes in the molecular structure, order parameters and chemical shifts as functions of iodine concentration. The observed changes in the order parameters are interpreted in terms of bond interaction tensors.
Resumo:
Electron paramagnetic resonance studies under ambient conditions of boron‐doped porous silicon show anisotropic Zeeman (g) and hyperfine (A) tensors, signaling localization of the charge carriers due to quantum confinement.
Resumo:
Several constitutive inequalities have been proposed in the literature to quantify the notion that ‘stress increases with strain’ in an elastic material. Due to some inherent shortcomings in them, which we discuss, we propose a new tensorial criterion for isotropic materials. We also present necessary conditions in terms of elasticity tensors for the onset of elastic instabilities.
Resumo:
When computing the change in electrical resistivity of a piezoresistive cubic material embedded in a deforming structure, the piezoresistive and the stress tensors should be in the same coordinate system. While the stress tensor is usually calculated in a coordinate system aligned with the principal axes of a regular structure, the specified piezoresistive coefficients may not be in that coordinate system. For instance, piezoresistive coefficients are usually given in an orthogonal cartesian coordinate system aligned with the <100> crystallographic directions and designers sometimes deliberately orient a crystallographic direction other than <100> along the principal directions of the structure to increase the gauge factor. In such structures, it is advantageous to calculate the piezoresistivity tensor in the coordinate system along which the stress tensors are known rather than the other way around. This is because the transformation of stress will have to be done at every point in the structure but piezoresistivity tensor needs to be transformed only once. Here, using tensor transformation relations, we show how to calculate the piezoresistive tensor along any arbitrary Cartesian coordinate system from the piezoresistive coefficients for the <100> coordinate system. Some of the software packages that simulate the piezoresistive effect do not have interfaces for calculation of the entire piezoresistive tensor for arbitrary directions. This warrants additional work for the user because not considering the complete piezoresisitive tensor can lead to large errors. This is illustrated with an example where the error is as high as 33%. Additionally, for elastic analysis, we used hybrid finite element formulation that estimates stresses more accurately than displacement-based formulation. Therefore, as shown in an example where the change in resistance can be calculated analytically, the percentage error of our piezoresistive program is an order of magnitude lower relative to displacement-based finite element method.
Resumo:
We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.
Resumo:
Asymptotically-accurate dimensional reduction from three to two dimensions and recovery of 3-D displacement field of non-prestretched dielectric hyperelastic membranes are carried out using the Variational Asymptotic Method (VAM) with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of the deformation along the plate reference surface chosen as the small parameters for asymptotic expansion. Present work incorporates large deformations (displacements and rotations), material nonlinearity (hyperelasticity), and electrical effects. It begins with 3-D nonlinear electroelastic energy and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a 2-D nonlinear plate analysis. Major contribution of this paper is a comprehensive nonlinear through-the-thickness analysis which provides a 2-D energy asymptotically equivalent of the 3-D energy, a 2-D constitutive relation between the 2-D generalized strain and stress tensors for the plate analysis and a set of recovery relations to express the 3-D displacement field. Analytical expressions are derived for warping functions and stiffness coefficients. This is the first attempt to integrate an analytical work on asymptotically-accurate nonlinear electro-elastic constitutive relation for compressible dielectric hyperelastic model with a generalized finite element analysis of plates to provide 3-D displacement fields using VAM. A unified software package `VAMNLM' (Variational Asymptotic Method applied to Non-Linear Material models) was developed to carry out 1-D non-linear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. The applicability of the current theory is demonstrated through an actuation test case, for which distribution of 3-D displacements are provided. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Using the positivity of relative entropy arising from the Ryu-Takayanagi formula for spherical entangling surfaces, we obtain constraints at the nonlinear level for the gravitational dual. We calculate the Green's function necessary to compute the first order correction to the entangling surface and use this to find the relative entropy for non-constant stress tensors in a derivative expansion. We show that the Einstein value satisfies the positivity condition, while the multidimensional parameter space away from it gets constrained.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
To further investigate the mechanism of acoustic emission (AE) in the rock fracture experiment, moment tensor analysis was carried out. The AE sources characterized by crack sizes, orientations and fracture modes, are represented by a time-dependent momen
Resumo:
A general incremental micromechanical scheme for the nonlinear behavior of particulate composites is presented in this paper. The advantage of this scheme is that it can reflect partly the effects of the third invariant of the stress on the overall mechanical behavior of nonlinear composites. The difficulty involved is the determination of the effective compliance tensors of the anisotropic multiphase composites. This is completed by making use of the generalized self-consistent Mori-Tanaka method which was recently developed by Dai et al. (Polymer Composites 19(1998) 506-513; Acta Mechanica Solida 18 (1998) 199-208). Comparison with existing theoretical and numerical results demonstrates that the present incremental scheme is quite satisfactory. Based on this incremental scheme, the overall mechanical behavior of a hard-particle reinforced metal matrix composite with progressive particle debonding damage is investigated.
Resumo:
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
Resumo:
Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the hybrid approach of large-eddy simulation (LES) and Lighthill’s acoustic analogy for turbulence-generated sound, the turbulence source fields are obtained using an LES and the turbulence-generated sound at far fields is calculated from Lighthill’s acoustic analogy. As only the velocity fields at resolved scales are available from the LES, the Lighthill stress tensor, serving as a source term in Lighthill’s acoustic equation, has to be evaluated from the resolved velocity fields. As a result, the contribution from the unresolved velocity fields is missing in the conventional LES. The sound of missing scales is shown to be important and hence needs to be modeled. The present study proposes a kinematic subgrid-scale (SGS) model which recasts the unresolved velocity fields into Lighthill’s stress tensors. A kinematic simulation is used to construct the unresolved velocity fields with the imposed temporal statistics, which is consistent with the random sweeping hypothesis. The kinematic SGS model is used to calculate sound power spectra from isotropic turbulence and yields an improved result: the missing portion of the sound power spectra is approximately recovered in the LES.
Resumo:
Part one of this thesis consists of two sections. In the first section the fluorine chemical shift of a single crystal CaF_2 has been measured as a function of external pressure up to 4 kilobar at room temperature using multiple pulse NMR techniques. The pressure dependence of the shift is found to be -1.7 ± 1 ppm/kbar, while a theoretical calculation using an overlap model predicts a shift of -0.46 ppm/kbar. In the second section a separation of the chemical shift tensor into physically meaningful "geometrical" and "chemical" contributions is presented and a comparison of the proposed model calculations with recently reported data on hydroxyl proton chemical shift tensors demonstrates, that for this system, the geometrical portion accounts for the qualitative features of the measured tensors.
Part two of the thesis consists of a study of fluoride ion motion in β-PbF_2 doped with NaF by measurement of the ^(19)F transverse relaxation time (T_2), spin lattice relaxation time (T_1) and the spin lattice relaxation time in the rotating frame (T_(1r)). Measurements over the temperature range of -50°C to 160°C lead to activation energies for T_1, T_(1r) and T_2 of 0.205 ± 0.01, 0.29 + 0.02 and 0.27 ± 0.01 ev/ion, and a T_(1r) minimum at 56°C yields a correlation time of 0.74 μsec. Pressure dependence of T_1 and T_2 yields activation volumes of <0.2 cm^3/g-mole and 1.76 ± 0.05 cm^3/g-mole respectively. These data along with the measured magnetic field independence of T_1 suggest that the measured T_1's are not caused by ^(19)F motion, but by thermally excited carriers.
Part three of the thesis consists of a study of two samples of Th_4H_(15), prepared under different conditions but both having the proper ratio of H/Th (to within 1%). The structure of the Th_4H_(15) as suggested by X-ray measurements is confirmed through a moment analysis of the rigid lattice line shape. T_1 and T_2 measurements above 390 K furnish activation energies of 16.3 ± 1.2 kcal/mole and 18.0 ± 3.0 kcal/mole, respectively. Below 350 K, T_(1r) measurements furnish an activation energy of 10.9 ± 0.7 kcal/mole, indicating most probably more than a single mechanism for proton motion. A time-temperature hysteresis effect of the proton motion was found in one of the two samples and is strongly indicative of a phase change. T_1 at room temperature and below is dominated by relaxation due to conduction electrons with the product T_1T being 180 ± 10 K-sec. Using multiple pulse techniques to greatly reduce homonuclear dipolar broadening, a temperature-dependent line shift was observed, and the chemical shift anisotropy is estimated to be less than 16 ppm.