986 resultados para Photothermal laser heating
Resumo:
Less invasive and more effective cancer treatments have been the aim of research in recent decades, e.g. photothermal tumour ablation using gold nanorods. In this study we investigate the cell death pathways activated, and confirm the possibility of CTAB-coated nanoparticle use in vivo. Nanorods were synthesized by the seeding method; some of them were centrifuged and washed to eliminate soluble CTAB. The MTT cytotoxicity test was performed to evaluate cytotoxicity, and the particles' viability after their synthesis was assessed. Once it had been observed that centrifuged and washed nanorods are harmless, and that nanoparticles must be used within 48 h after their synthesis, in vivo hyperthermic treatment was performed.After irradiation, a tumour biopsy was subjected to a chemiluminescence assay to evaluate membrane lipoperoxidation, and to a TRAP assay to evaluate total antioxidant capacity. There was a 47 ºC rise in temperature observed at the tumour site. Animals irradiated with a laser (with or without nanorods) showed similar membrane lipoperoxidation, more intense than in control animals. The antioxidant capacity of experimental animal tumours was elevated. Our results indicate that necrosis is possibly the cell death pathway activated in this case, and that nanorod treatment is worthwhile.
Resumo:
Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.
Resumo:
Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue.
Resumo:
Laser Assisted Skin Healing (LASH) was first introduced in 2001 by Capon and Mordon to prevent keloids and hypertrophic scars. LASH requires homogenous heating throughout the full thickness of the skin around the wound. However, LASH therapy with 808-nm diode laser is deemed to be only applicable for phototype I-IV due to melanin absorption. This prospective ex-vivo study aims to evaluate the thermal effects of different wavelengths (808, 1064, 1210 and 1320 nm) on human skin phototype II, IV and VI.
Resumo:
Introduction: Laser tissue fusion has a large potential for minimal invasive tissue fusion in different surgical specialties. We have developed a combined endovascular minimal invasive surgical technique to fuse blood vessels for bypass surgery. However, the main difficulty was to achieve reproducible results as the main tensile strength is a result of protein denaturation. We therefore aimed to develop a quantitative, reproducible tissue fusion using polycapsulated silica core nanoparticles containing indocyanine green (Si@PCL/ICG). Methods: In a first step we developed mesoporous indocyanine green (ICG) containing nanoparticles and assessed their heating profile. Furthermore the stability to light exposure and ICG degradation was measured. In a second phase Si@PCL/ICG nanoparticles for embedding into a biodegradeable implant was developed and characterized using differential scanning calomeritry technique (DSC). Results: ICG containing mesoporous silica nanoparticles showed a sufficient increase in temperature up to 80°C suitable for laser tissue fusion. However, long-term stability of ICG mesoporous nanoparticles is lost after 7 days of light exposure. In contrast Si@PCL/ICG nanoparticles demonstrated a strong heating capacity as well as a good DSC profile for laser tissue fusion and long-term stability of 3 weeks. Furthermore Si@PCL/ICG nanoparticles can be directly dispersed in spin-coated polycaprolactone polymer. Conclusion: Si@PCL/ICG nanoparticles have good long-term stability and polymer embedding properties suitable for laser tissue fusion.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
An analytical study of the relativistic interaction of a linearly-polarized laser-field of w frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2w electron bunches), as well as the mean electron energy.
Resumo:
The use of laser beams as excitation sources for the characterization of semiconductor nanowires (NWs) is largely extended. Raman spectroscopy and photoluminescence (PL) are currently applied to the study of NWs. However, NWs are systems with poor thermal conductivity and poor heat dissipation, which result in unintentional heating under the excitation with a focused laser beam with microscopic size, as those usually used in microRaman and microPL experiments. On the other hand, the NWs have subwavelength diameter, which changes the optical absorption with respect to the absorption in bulk materials. Furthermore, the NW diameter is smaller than the laser beam spot, which means that the optical power absorbed by the NW depends on its position inside the laser beam spot. A detailed analysis of the interaction between a microscopic focused laser beam and semiconductor NWs is necessary for the understanding of the experiments involving laser beam excitation of NWs. We present in this work a numerical analysis of the thermal transport in Si NWs, where the heat source is the laser energy locally absorbed by the NW. This analysis takes account of the optical absorption, the thermal conductivity, the dimensions, diameter and length of the NWs, and the immersion medium. Both free standing and heat-sunk NWs are considered. Also, the temperature distribution in ensembles of NWs is discussed. This analysis intends to constitute a tool for the understanding of the thermal phenomena induced by laser beams in semiconductor NWs.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs
Resumo:
One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (FEM). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterisation of NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NW's diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectrum of Si NWs. It is demonstrated that the temperature increase induced by the laser beam plays a major role in shaping the Raman spectrum of Si NWs.
Resumo:
Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).
Resumo:
An advantage of laser crystallization over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the a-Si thin film to change the microstructure to poly-Si. Thin film samples of a-Si were irradiated with a CW-green laser source. Laser irradiated spots were produced by using different laser powers and irradiation times. These parameters are identified as key variables in the crystallization process. The power threshold for crystallization is reduced as the irradiation time is increased. When this threshold is reached the crystalline fraction increases lineally with power for each irradiation time. The experimental results are analysed with the aid of a numerical thermal model and the presence of two crystallization mechanisms are observed: one due to melting and the other due to solid phase transformation.