992 resultados para Periodontal ligament


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ultimate goal of periodontal therapy is to regenerate periodontal supporting tissues, but this is hard to achieve as the results of periodontal techniques for regeneration are clinically unpredictable. Stem cells owing to their plasticity and proliferation potential provides a new paradigm for periodontal regeneration. Stem cells from mesenchyme can self renew and generate new dental tissues (including dentin and cementum), alveolar bone and periodontal ligament, and thus they have great potential in periodontal regeneration. This chapter presents an insight into mesenchymal stem cells and their potential use in periodontal regeneration. In this chapter the cellular and molecular biology in periodontal regeneration will be introduced, followed by a range of conventional surgical procedures for periodontal regeneration will be discussed. Mesenchymal stem cells applied in regenerated periodontal tissue and their biological characterizations in vitro will be also introduced. Lastly, the use of mesenchymal stem cell to repair periodontal tissues in large animal models will be also reviewed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal disease is characterized by the destruction of the tissues that attach the tooth to the alveolar bone. Various methods for regenerative periodontal therapy including the use of barrier membranes, bone replacement grafts, and growth factor delivery have been investigated; however, true regeneration of periodontal tissue is still a significant challenge to scientists and clinicians. The focus on periodontal tissue engineering has shifted from attempting to recreate tissue replacements/constructs to the development of biomaterials that incorporate and release regulatory signals to achieve in situ periodontal regeneration. The release of ions and molecular cues from biomaterials may help to unlock latent regenerative potential in the body by regulating cell proliferation and differentiation towards different lineages (e.g. osteoblasts and cementoblasts). Silicate-based bioactive materials, including bioactive silicate glasses and ceramics, have become the materials of choice for periodontal regeneration, due to their favourable osteoconductivity and bioactivity. This article will focus on the most recent advances in the in vitro and in vivo biological application of silicate-based ceramics, specifically as it relates to periodontal tissue engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cryopreservation is a process where cells or biological tissues are preserved by freezing at very low temperatures and aims to cease reversibly, in a controlled manner, all the biological functions of living tissues, i.e., maintain cell preservation so that it can recover with high degree of viability and functional integrity. This study aimed to evaluate the influence of cryopreservation on the mesenchymal stem cells originating from the periodontal ligament of human third molars by in vitro experiments. Six healthy teeth were removed and the periodontal cells grown in culture medium containing α-MEM supplemented with antibiotics and 15% FBS in a humidified atmosphere with 5% CO2 at 37° C. Cells isolated from each sample were divided into two groups: Group I - immediate cell culture (not fresh cryopreserved cells) and Group II - cell cryopreservation, during a period of 30 days. Analyses of rates of cell adhesion and proliferation in different groups were performed by counting the cells adhered to the wells, in intervals of 24, 48 and 72 hours after the start of cultivation. The number of cells in each well was obtained by counting viable cells with the use of hemocytometer and the method of exclusion of cells stained by trypan blue. The difference between groups for each of the times was analyzed by Wilcoxon test. Regarding the temporal evolution for each group, analysis was done by Friedman's test to verify the existence of differences between times and, when it existed, the Wilcoxon penalty was applied. The results showed no statistically significant difference between the two groups analyzed in this study. Therefore, we conclude that the cryopreservation process, after a period of 30 days, did not influence the cell type studied, and there was no difference in growth capacity in vitro between the groups

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last years, many scientific researches in implantology have been focused on alternatives that would provide higher speed and quality in the process of osseointegration. Different treatment methods can be used to modify the topographic and chemical properties of titanium surface in order to optimize the tissue-implant reactions by a positive tissue response. This study aimed to evaluate the adhesion and proliferation of mesenchymal cells from human periodontal ligament on two different titanium surfaces, using cell culture techniques. Grade II titanium discs received different surface treatments, forming two distinct groups: polished and cathodic cage plasma nitriding. Human periodontal ligament mesenchymal cells were cultured on titanium discs in 24-well cell culture plates, at a density of 2 x 104 cells per well, including wells with no discs as positive control. Data obtained by counting the cells that adhered to the titanium surfaces (polished group and cathodic cage group) and to the plastic surface (control group), in the 24, 48 and 72-hour periods after plating, were used to analyze cell adhesion and proliferation and to obtain the cell growing curve in the different groups. The data were submitted to nonparametric analysis and the differences between groups were compared by Kruskal-Wallis and Friedman statistical tests. No statistically significant differences were found in the cells counts between the groups (p>0.05). It was concluded that both treatments produced surfaces compatible with the adhesion and proliferation of human periodontal ligament mesenchymal cells

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low level laser irradiation (LLLI) has been used in Dentistry to promote wound healing and tissue regeneration. The literature shows a positive effect of LLLI on cell proliferation, but little is known about their effectiveness in promoting stem cells proliferation. The aim of this study was to evaluate the effect of LLLI on the proliferative rate of human periodontal ligament stem cells. Extracts of periodontal ligament were isolated from two third molars removed by surgical and/or orthodontic indication. After enzymatic digestion, the cells were grown in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. On the third subculture, the cells were irradiated with a InGaAlP-diode laser, using two different energy densities (0,5J/cm 2 - 16 seconds and 1,0J/cm² - 33 seconds), with wavelength of 660nm and output power of 30mW. A new irradiation, using the same parameters, was performed 48h after the first. A control group (non irradiated) was kept under the same experimental culture conditions. The Trypan blue exclusion test and the mitochondrial activity of the cells measured by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] essay were performed to assess the cell proliferation in the intervals of 0, 24, 48 e 72 h after irradiation. The data of cell counts were submitted to nonparametrical statistical tests (Kruskal-Wallis and Mann-Whitney), considering a confidence interval of 95%. DAPI (4 -6-Diamidino-2-phenylindole) staining of the cells was performed at 72h interval to evaluate possible nuclear morphological changes induced by LLLI. The results of this study show that the energy density of 1,0 J/cm² promoted greater cell proliferation compared to the other groups (control and 0,5 J/cm²) at intervals of 48 and 72h. The mitochondrial activity measured by MTT essay showed similar results to the Trypan blue cell counting test. The group irradiated with 1,0J/cm² exhibited a significantly higher MTT activity in the intervals of 48 and 72h, when compared to the group irradiated with 0,5J/cm². No nuclear morphological change was observed in the cells from the three groups studied. It is concluded that LLLI has stimulatory effects on the proliferation of human periodontal ligament stem cells. Therefore, the use of laser irradiation in this cell type may be important to promote future advances in periodontal regeneration

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to evaluate the thickness of the periodontal ligament of rat molars during orthodontic tooth movement (OTM). METHODS: Thirty Wistar rats were divided into three groups of 10 animals each: GI, GII and GIII and the mice were euthanized at 7, 14 and 21 days, respectively. Experimental subjects were compared to their respective controls by the Mann-Whitney test. Comparison of values between compression and tension sides were performed during the same and different time periods through Analysis of Variance (ANOVA), Kruskal-Wallis test and, subsequently, Tukey's test. RESULTS: Groups GI and GII showed decreased PDL size in the apical regions of the mesiobuccal root and in the cervical region of the distobuccal root. There was also an increased PDL in the cervical regions of the mesiobuccal root, apical region of the distobuccal root and middle region of both roots. CONCLUSION: The reduction and increase in PDL size were seen in the same root, which characterizes tooth inclination. The apical, middle and cervical regions were compared with one another in each time period and at three times: 7, 14 and 21 days. They were also compared in each region, confirming a tipping movement in GI and GII and a gradual decreased intensity between GI to GII, reaching normal dimension in GIII.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Matrix metal loprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: The force delivered during rapid maxillary expansion (RME) produces areas of compression on the periodontal ligament of the supporting teeth. The resulting alveolar bone resorption can lead to unwanted tooth movement in the same direction. The purpose of this study was to evaluate periodontal changes by means of computed tomography after RME with tooth-tissue-borne and tooth-borne expanders. Methods: The sample comprised 8 girls, 11 to 14 years old, with Class I or II malocclusions with unilateral or bilateral posterior crossbites Four girls were treated with tooth-tissue-borne Haas-type expanders, and 4 were treated with tooth-borne Hyrax expanders. The appliances were activated up to the full 7-mm capacity of the expansion screw. Spiral CT scans were taken before expansion and after the 3-month retention period when the expander was removed. One-millimeter thick axial sections were exposed parallel to the palatal plane, comprising the dentoalveolar area and the base of the maxilla up to the inferior third of the nasal cavity. Multiplanar reconstruction was used to measure buccal and lingual bone plate thickness and buccal alveolar bone crest level by means of the computerized method. Results and Conclusions: RME reduced the buccal bone plate thickness of supporting teeth 0.6 to 0.9 mm and increased the lingual bone plate thickness 0.8 to 1.3 mm. The increase in lingual bone plate thickness of the maxillary posterior teeth was greater in the tooth-borne expansion group than in the tooth-tissue-borne group. RME induced bone dehiscences on the anchorage teeth's buccal aspect (7.1 ± 4.6 mm at the first premolars and 3.8 ± 4.4 mm at the mesiobuccal area of the first molars), especially in subjects with thinner buccal bone plates. The tooth-borne expander produced greater reduction of first premolar buccal alveolar bone crest level than did the tooth-tissue-borne expander. © 2006 American Association of Orthodontists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)