986 resultados para Periodic thermal condition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to assay the effects of different levels of dietary vitamins C and E on growth indices and survival and resistance against thermal stress of rainbow trout (Oncorhynchus mykiss) in pond culture of Marzan abad from December 2011 to February 2011. Seven diets were supplemented. 300 fish with the average weight of 17 g were introduced to ponds for 60 days. The results showed that the highest and the lowest weight gain were in fish fed with diet containing 50 mg/kg vitamin C and E and 0 mg/kg vitamin C and E(control) , respectively. The highest and the lowest Feed Conversion Ratio (FCR) were measured in control and diet 50 mg/kg vitamin C and E. There is a significant difference in their treatments (P<0.05). Also, the lowest and highest amount of Weight Gain (WG) were observed in (E) treatment with 165.04% and 117.5% in control, the highest and lowest Specific Growth Rate (SGR), Protein Efficiency Ratio (PER), Condition Factor (CF) was found in control and treatment 50 mg/kg vitamin C and E, respectively(P<0.05). In conclusion vitamin C and E have an important role in enhancement of growth performance and feed efficiency of rainbow trout.The highest red blood cells were found in combined treatments and which the vitamin C was added.The highest RBC were found in E treatment(1.1×104 /mm3) and the lowest one in control (P˂0.05). Counting white blood cells also confirmed highest quantity in combined treatments with (69.83×104/mm3) and the lowest one (28.83×104 /mm3) in control. In conclusion these vitamins have a significant role in blood characteristics. Meantime, the resistance against termal stress was measured at the end of 60 days by facing fishes into 5 centigrade warmer water so consentration of Cortisol and Glucose measured for this reason.The lowest cortisol amount was measured in E treatment with 188.74 ng/ml and the highest was found in control(P<0.05). There was a significant difference in blood glucose consentration of fishes in F treatment with (78.66 mg/dl) and control with 136 mg/dl as a highest one(P<0.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (l-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process. Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at l-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at l-g than that at 1-g. The model predictions agreed well with the l-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 lm at ambient temperature 1500 K and oxygen concentration 0.23. 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the possible failure modes of the thermal barrier coating (TBC) used to protect the scramjet combustion chamber, the local heating via laser beam irradiation was utilized to simulate the service condition of high thermal flux and high temperature gradient. Firstly, the experimental method and process were described and the typical fracture morphology of the TBC under test were provided. Then, the theoretical and finite element modeling were carried out to study the temperature, deformation and stresses of the specimen when the top ceramic coat was subjected to local heating, and to demonstrate the mechanism on the failure of the TBC. It is revealed that the interface delamination shall appear and ultimately lead to the failure of the TBC under such thermal loading of local quick heating. According to the outcome of this study, the driving force of the interface delamination is influenced greatly by the key structural parameters and performance matching. Moreover, by utilizing the rules of the effects of these parameters on the fracture driving force, there is some possibility for the designer to optimize the performances of the TBC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of vinylidene chloride (VDC) copolymers with methyl acrylate (MA) or butyl acrylate (BA) as comonomer (not more than 10%) was prepared by free-radical suspension copolymerization. The effects of comonomer structure, copolymer composition, and reaction condition (such as polymerization temperature on crystallinity) and thermal properties (such as melting temperature and decomposition temperature) were investigated. All VDC/acrylics copolymers studied here are semicrystalline and have more than one crystalline structure. The melting temperature of MA/VDC copolymers is decreased progressively with increase in MA content. The decomposition temperature of MA/VDC copolymers is slight increased gradually with increase in MA content. MA/VDC copolymers have lower melting temperature compared with BA/VDC copolymers with same VDC composition. The melting temperature of VDC copolymers increases with increase in polymerization temperature and decomposition temperature of those is almost independent of polymerization temperature. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly ordered mesoporous ethanesilica (MES) with 2D hexagonal structure was synthesized from 1,2-bis(trimethoxysilyl) ethane under neutral conditions for the first time. Divalent salts, such as NiCl2, MgCl2, ZnCl2, ZnSO4 and Zn(NO3)(2), were used to help the formation of the ordered mesostructure. The MES samples were characterized by powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, FT-IR, C-13 and Si-29 solid-state NMR and thermal gravimetric analysis. A phase transition from a disordered wormhole-like structure to an ordered P6mm structure was observed upon the addition of inorganic salts. The pore size of the MES decreases from 4.7 to 3.9 nm with increasing content of the inorganic salts. Fluoride was also found to be important for the formation of ordered MES under neutral conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pigeons and other animals soon learn to wait (pause) after food delivery on periodic-food schedules before resuming the food-rewarded response. Under most conditions the steady-state duration of the average waiting time, t, is a linear function of the typical interfood interval. We describe three experiments designed to explore the limits of this process. In all experiments, t was associated with one key color and the subsequent food delay, T, with another. In the first experiment, we compared the relation between t (waiting time) and T (food delay) under two conditions: when T was held constant, and when T was an inverse function of t. The pigeons could maximize the rate of food delivery under the first condition by setting t to a consistently short value; optimal behavior under the second condition required a linear relation with unit slope between t and T. Despite this difference in optimal policy, the pigeons in both cases showed the same linear relation, with slope less than one, between t and T. This result was confirmed in a second parametric experiment that added a third condition, in which T + t was held constant. Linear waiting appears to be an obligatory rule for pigeons. In a third experiment we arranged for a multiplicative relation between t and T (positive feedback), and produced either very short or very long waiting times as predicted by a quasi-dynamic model in which waiting time is strongly determined by the just-preceding food delay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and growth of intermetallic compound layer thickness is one of the important issues in search for reliable electronic and electrical connections. Intermetallic compounds (IMCs) are an essential part of solder joints. At low levels, they have a strengthening effect on the joint; but at higher levels, they tend to make solder joints more brittle. If the solder joint is subjected to long-standing exposure of high temperature, this could result in continuous growth of intermetallic compound layer. The brittle intermetallic compound layer formed in this way is very much prone to fracture and cold therefore lead to mechanical and electrical failure of the joint. Therefore, the primary aim of this study is to investigate the growth of intermetallic compound layer thickness subjected to five different reflow profiles. The study also looks at the effect of three different temperature cycles (with maximum cycle temperature of 25 0C, 40 0C and 60 0C) on intermetallic compound formation and their growth behaviour.. Two different Sn-Ag-Cu solder pastes (namely paste P1 and paste P2) which were different in flux medium, were used for the study. The result showed that the growth of intermetallic compound layer thickness was a function of ageing temperature. It was found that the rate of growth of intermetallic compound layer thickness of paste P1 was higher than paste P2 at the same temperature condition. This behaviour could be related to the differences in flux mediums of solder paste samples used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of accurate structural/thermal numerical models of complex systems, such as aircraft fuselage barrels, is often limited and determined by the smallest scales that need to be modelled. The development of reduced order models of the smallest scales and consequently their integration with higher level models can be a way to minimise the bottle neck present, while still having efficient, robust and accurate numerical models. In this paper a methodology on how to develop compact thermal fluid models (CTFMs) for compartments where mixed convection regimes are present is demonstrated. Detailed numerical simulations (CFD) have been developed for an aircraft crown compartment and validated against experimental data obtained from a 1:1 scale compartment rig. The crown compartment is defined as the confined area between the upper fuselage and the passenger cabin in a single aisle commercial aircraft. CFD results were utilised to extract average quantities (temperature and heat fluxes) and characteristic parameters (heat transfer coefficients) to generate CTFMs. The CTFMs have then been compared with the results obtained from the detailed models showing average errors for temperature predictions lower than 5%. This error can be deemed acceptable when compared to the nominal experimental error associated with the thermocouple measurements.

The CTFMs methodology developed allows to generate accurate reduced order models where accuracy is restricted to the region of Boundary Conditions applied. This limitation arises from the sensitivity of the internal flow structures to the applied boundary condition set. CTFMs thus generated can be then integrated in complex numerical modelling of whole fuselage sections.

Further steps in the development of an exhaustive methodology would be the implementation of a logic ruled based approach to extract directly from the CFD simulations numbers and positions of the nodes for the CTFM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.