964 resultados para Pareto-optimal solutions
Resumo:
Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.
Resumo:
Phylogenetic inference consist in the search of an evolutionary tree to explain the best way possible genealogical relationships of a set of species. Phylogenetic analysis has a large number of applications in areas such as biology, ecology, paleontology, etc. There are several criterias which has been defined in order to infer phylogenies, among which are the maximum parsimony and maximum likelihood. The first one tries to find the phylogenetic tree that minimizes the number of evolutionary steps needed to describe the evolutionary history among species, while the second tries to find the tree that has the highest probability of produce the observed data according to an evolutionary model. The search of a phylogenetic tree can be formulated as a multi-objective optimization problem, which aims to find trees which satisfy simultaneously (and as much as possible) both criteria of parsimony and likelihood. Due to the fact that these criteria are different there won't be a single optimal solution (a single tree), but a set of compromise solutions. The solutions of this set are called "Pareto Optimal". To find this solutions, evolutionary algorithms are being used with success nowadays.This algorithms are a family of techniques, which aren’t exact, inspired by the process of natural selection. They usually find great quality solutions in order to resolve convoluted optimization problems. The way this algorithms works is based on the handling of a set of trial solutions (trees in the phylogeny case) using operators, some of them exchanges information between solutions, simulating DNA crossing, and others apply aleatory modifications, simulating a mutation. The result of this algorithms is an approximation to the set of the “Pareto Optimal” which can be shown in a graph with in order that the expert in the problem (the biologist when we talk about inference) can choose the solution of the commitment which produces the higher interest. In the case of optimization multi-objective applied to phylogenetic inference, there is open source software tool, called MO-Phylogenetics, which is designed for the purpose of resolving inference problems with classic evolutionary algorithms and last generation algorithms. REFERENCES [1] C.A. Coello Coello, G.B. Lamont, D.A. van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Spring. Agosto 2007 [2] C. Zambrano-Vega, A.J. Nebro, J.F Aldana-Montes. MO-Phylogenetics: a phylogenetic inference software tool with multi-objective evolutionary metaheuristics. Methods in Ecology and Evolution. En prensa. Febrero 2016.
Resumo:
Although the primary objective on designing a structure is to support the external loads, the achievement of an optimal layout that reduces all costs associated with the structure is an aspect of increasing interest. The problem of finding the optimal layout for bridgelike structures subjected to a uniform load is considered. The problem is formulated following a theory on economy of frame structures, using the stress volume as the objective function and including the selection of appropriate values for statically indeterminate reactions. It is solved in a function space of finite dimension instead of using a general variational approach, obtaining near-optimal solutions. The results obtained with this profitable strategy are very close to the best layouts known to date, with differences of less than 2% for the stress volume, but with a simpler layout that can be recognized in some real bridges. This strategy could be a guide to preliminary design of bridges subject to a wide class of costs.
Resumo:
Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.
Resumo:
The usage of multi material structures in industry, especially in the automotive industry are increasing. To overcome the difficulties in joining these structures, adhesives have several benefits over traditional joining methods. Therefore, accurate simulations of the entire process of fracture including the adhesive layer is crucial. In this paper, material parameters of a previously developed meso mechanical finite element (FE) model of a thin adhesive layer are optimized using the Strength Pareto Evolutionary Algorithm (SPEA2). Objective functions are defined as the error between experimental data and simulation data. The experimental data is provided by previously performed experiments where an adhesive layer was loaded in monotonically increasing peel and shear. Two objective functions are dependent on 9 model parameters (decision variables) in total and are evaluated by running two FEsimulations, one is loading the adhesive layer in peel and the other in shear. The original study converted the two objective functions into one function that resulted in one optimal solution. In this study, however, a Pareto frontis obtained by employing the SPEA2 algorithm. Thus, more insight into the material model, objective functions, optimal solutions and decision space is acquired using the Pareto front. We compare the results and show good agreement with the experimental data.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs. Published by Elsevier Ltd.
Resumo:
This paper addresses the single machine scheduling problem with a common due date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the previous studies in the literature deal with this problem using heuristics and metaheuristics approaches. With the intention of contributing to the study of this problem, a branch-and-bound algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are introduced. The proposed approach is examined through a computational comparative study with 280 problems involving different due date scenarios. In addition, the values of optimal solutions for small problems from a known benchmark are provided.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
Este trabalho tem por objetivo discutir o surgimento de um programa de pesquisa na Ciência Econômica, no que concerne a análise das assimetrias de informação, as diferenças epistemológicas e as implicações em termos de equilíbrio ótimo de Pareto, em contraponto à abordagem neoclássica standard. Em busca de tal objetivo, foi necessário destacar o método de ambos os paradigmas; todavia, era igualmente necessário discutir a filosofia/epistemologia da ciência envolvida e que serviria de base para uma abordagem relacionada a mudanças paradigmáticas na ciência. No capítulo 1, discutimos a epistemologia da ciência, a partir de três autores: Popper, Kuhn e Lakatos. Definimos o conjunto de hipóteses que podem ser associadas ao método empregado pela Escola Neoclássica, a partir da filosofia da ciência proposta por Lakatos. Em seguida, no capítulo 2, fizemos uma longa exposição do método neoclássico, definindo os axiomas inerentes às preferências bem-comportadas, apresentando algebricamente o equilíbrio geral walrasiano, exemplificando o relaxamento de hipóteses auxiliares do modelo neoclássico a partir de Friedman e, por fim, aplicando o instrumental neoclássico ao relaxamento da hipótese auxiliar de perfeição da informação, a partir do modelo desenvolvido por Grossman & Stiglitz (1976), bem como da expansão matemática desenvolvida pelo presente trabalho. Finalmente, encerramos a presente dissertação com o capítulo 3, no qual, basicamente, expomos as principais contribuições de autores como Stiglitz, Akerlof e Arrow, no que concerne a mercados permeados por informações assimétricas e comportamentos oportunistas. Procuramos mostrar as consequências para o próprio mercado, chegando a resultados em que o mesmo era extinto. Apresentamos a segunda parte do modelo de Grossman & Stiglitz, enfatizando a natureza imperfeita do sistema de preços, sua incapacidade de transmitir todas as informações sobre os bens ao conjunto dos agentes, e, por fim, discutimos tópicos variados ligados à Economia da Informação.
Resumo:
Os reguladores de tensão LDO são utilizados intensivamente na actual indústria de electrónica, são uma parte essencial de um bloco de gestão de potência para um SoC. O aumento de produtos portáteis alimentados por baterias levou ao crescimento de soluções totalmente integradas, o que degrada o rendimento dos blocos analógicos que o constituem face às perturbações introduzidas na alimentação. Desta forma, surge a necessidade de procurar soluções cada vez mais optimizadas, impondo assim novas soluções, e/ou melhoramentos dos circuitos de gestão de potência, tendo como objectivo final o aumento do desempenho e da autonomia dos dispositivos electrónicos. Normalmente este tipo de reguladores tem a corrente de saída limitada, devido a problemas de estabilidade associados. Numa tentativa de evitar a instabilidade para as correntes de carga definidas e aumentar o PSRR do mesmo, é apresentado um método de implementação que tem como objectivo melhorar estas características, em que se pretende aumentar o rendimento e melhorar a resposta à variação da carga. No entanto, a técnica apresentada utiliza polarização adaptativa do estágio de potência, o que implica um aumento da corrente de consumo. O regulador LDO foi implementado na tecnologia CMOS UMC 0.18μm e ocupa uma área inferior a 0,2mm2. Os resultados da simulação mostram que o mesmo suporta uma transição de corrente 10μA para 100mA, com uma queda de tensão entre a tensão de alimentação e a tensão de saída inferior a 200mV. A estabilidade é assegurada para todas as correntes de carga. O tempo de estabelecimento é inferior a 6μs e as variações da tensão de saída relativamente a seu valor nominal são inferiores a 5mV. A corrente de consumo varia entre os 140μA até 200μA, o que permite atingir as especificações proposta para um PSRR de 40dB@10kHz.
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.