930 resultados para PV power profile
Resumo:
Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
Plan and profile of discharge tunnel along Niagara River. The horizontal scale is 1 inch = 100 feet, the vertical scale is 1 inch = 40 feet. The drawing is dated November 7, 1902.
Resumo:
Four races of Xanthomonas campestris pv. mal-vacearum (Xcm) viz. races 23, 27 and 32 (isolated from Gossypium hirsutum) and race 23b (from Gossypium barbadense) were studied. The plasmid profile of the natural isolates showed four plasmids in races 23 and 23b (ca. 60, 40, 23, 8.2 kb), five in race 27 (ca. 60, 40, 23, 8.2 and 3.7 kb) and six in race 32 (ca. 60, 40, 23, 8.2, 3.7 and 1.6 kb). Continuously sub-cultured laboratory isolates of the Xcm races resulted in the loss of all but two plasmids, ca. 60 and 40 kb in size. When the laboratory isolates were passed through cotton (Gossypium hirsutum), they regained certain plasmids so that four plasmids were found in race 23 and 23b (ca. 60, 40, 23 and 8.2 kb), five in race 27 (ca. 60, 40, 23, 8.2 and 3.7 kb) and six in race 32 (ca. 60, 40, 23, 8.2, 3.7 and 1.6 kb), which was more or less similar to the original isolates. The isolates recovered from cotton maintained their plasmid profile (except for minor changes in the miniplasmids) after storage for six months at -70degreesC in 50% glycerol. It is suggested that plasmid profiles among highly virulent races of Xcm are unstable during repeated sub-culturing at room temperature, resulting in rapid loss of some plasmids. However, when the cultures were sub-cultured and stored at -70degreesC the plasmid profile was fairly stable except for the miniplasmids (ca. 3.7 and 1.6 kb).
Resumo:
This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
Hybrid system micro-generation integration of PV-wind power is presented by a form of energy in which problems resulting from variability in the intensity of wind and solar intensity are possible mitigation either by complementation between one source to another or the largest stability configured by the generate the system. Based on this context, this work aims to assessing the performance of a hybrid system PV-wind power energy small of a rural property for their electrification. The study has been developed at the Rural Laboratory Powering from Engineering Department of UNESP. In order to present this research, a hybrid system has been installed PV-wind power, composed of one 400Wp windmill and a 300 Wp PV-system. The results obtained allowed us to evaluate the solar and wind energy supplied ranked among 285 and 360 kWh electric power generated by the PV-wind power hybrid system stood between 25,5 and 31 kWh. At is to say achieving yield of approximately than 10% during one year observation period, i.e., it was concluded that the performance of the hybrid system depended essentially the energy received and generated by the PV-system and that there was complementation between generating wind power and PV-systems with regard to time of day and the annual seasons by confirming the technical feasibility of this kind system of micro-generation in small rural properties.
Resumo:
Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.
Resumo:
The use of modular or ‘micro’ maximum power point tracking (MPPT) converters at module level in series association, commercially known as “power optimizers”, allows the individual adaptation of each panel to the load, solving part of the problems related to partial shadows and different tilt and/or orientation angles of the photovoltaic (PV) modules. This is particularly relevant in building integrated PV systems. This paper presents useful behavioural analytical studies of cascade MPPT converters and evaluation test results of a prototype developed under a Spanish national research project. On the one hand, this work focuses on the development of new useful expressions which can be used to identify the behaviour of individual MPPT converters applied to each module and connected in series, in a typical grid-connected PV system. On the other hand, a novel characterization method of MPPT converters is developed, and experimental results of the prototype are obtained: when individual partial shading is applied, and they are connected in a typical grid connected PV array
Resumo:
The variable nature of the irradiance can produce significant fluctuations in the power generated by large grid-connected photovoltaic (PV) plants. Experimental 1 s data were collected throughout a year from six PV plants, 18 MWp in total. Then, the dependence of short (below 10 min) power fluctuation on PV plant size has been investigated. The analysis focuses on the study of fluctuation frequency as well as the maximum fluctuation value registered. An analytic model able to describe the frequency of a given fluctuation for a certain day is proposed
Resumo:
The power generated by large grid-connected photovoltaic (PV) plants depends greatly on the solar irradiance. This paper studies the effects of the solar irradiance variability analyzing experimental 1-s data collected throughout a year at six PV plants, totaling 18 MWp. Each PV plant was modeled as a first order filter function based on an analysis in the frequency domain of the irradiance data and the output power signals. An empiric expression which relates the filter parameters and the PV plant size has been proposed. This simple model has been successfully validated precisely determining the daily maximum output power fluctuation from incident irradiance measurements.