979 resultados para PROTEASE-ACTIVATED RECEPTORS


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does a protease act like a hormone to regulate cellular functions? The coagulation protease thrombin (EC 3.4.21.5) activates platelets and regulates the behavior of other cells by means of G protein-coupled protease-activated receptors (PARs). PAR1 is activated when thrombin binds to and cleaves its amino-terminal exodomain to unmask a new receptor amino terminus. This new amino terminus then serves as a tethered peptide ligand, binding intramolecularly to the body of the receptor to effect transmembrane signaling. The irreversibility of PAR1’s proteolytic activation mechanism stands in contrast to the reversible ligand binding that activates classical G protein-coupled receptors and compels special mechanisms for desensitization and resensitization. In endothelial cells and fibroblasts, activated PAR1 rapidly internalizes and then sorts to lysosomes rather than recycling to the plasma membrane as do classical G protein-coupled receptors. This trafficking behavior is critical for termination of thrombin signaling. An intracellular pool of thrombin receptors refreshes the cell surface with naïve receptors, thereby maintaining thrombin responsiveness. Thus cells have evolved a trafficking solution to the signaling problem presented by PARs. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin. PAR2 is activated by trypsin and by trypsin-like proteases but not by thrombin. Recent studies with knockout mice, receptor-activating peptides, and blocking antibodies are beginning to define the role of these receptors in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crucial role of cell signaling in hemostasis is clearly established by the action of the downstream coagulation protease thrombin that cleaves platelet-expressed G-protein-coupled protease activated receptors (PARs). Certain PARs are cleaved by the upstream coagulation proteases factor Xa (Xa) and the tissue factor (TF)–factor VIIa (VIIa) complex, but these enzymes are required at high nonphysiological concentrations and show limited recognition specificity for the scissile bond of target PARs. However, defining a physiological mechanism of PAR activation by upstream proteases is highly relevant because of the potent anti-inflammatory in vivo effects of inhibitors of the TF initiation complex. Activation of substrate factor X (X) by the TF–VIIa complex is here shown to produce enhanced cell signaling in comparison to the TF–VIIa complex alone, free Xa, or Xa that is generated in situ by the intrinsic activation complex. Macromolecular assembly of X into a ternary complex of TF–VIIa–X is required for proteolytic conversion to Xa, and product Xa remains transiently associated in a TF–VIIa–Xa complex. By trapping this complex with a unique inhibitor that preserves Xa activity, we directly show that Xa in this ternary complex efficiently activates PAR-1 and -2. These experiments support the concept that proinflammatory upstream coagulation protease signaling is mechanistically coupled and thus an integrated part of the TF–VIIa-initiated coagulation pathway, rather than a late event during excessive activation of coagulation and systemic generation of proteolytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Activation of human platelets by thrombin is mediated by the proteolytic cleavage of two G-protein coupled protease-activated receptors, PAR-1 and PAR-4. However, thrombin also binds specifically to the platelet surface glycoprotein GPIb. It has been claimed that thrombin can induce aggregation of platelets via a novel GPIb-mediated pathway, which is independent of PAR activation and fibrinogen binding to alpha(IIb)beta(3) integrin, but dependent upon polymerizing fibrin and the generation of intracellular signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine proteases are active in many physiological and pathological processes within bone tissue. Although essential to adequate maintenance of bone and cartilage, their inappropriate expression can lead to exacerbation of tissue destruction and inflammation. Their effects are exerted through multiple pathways, including interaction with signalling molecules such as transforming growth factor ß (TGFß), binding to protease-activated receptors (PARs), and direct proteolysis of extracellular matrix proteins, in some cases working synergistically with matrix metalloproteases in the remodelling of bone tissue. The overall effect of these interactions is not yet clear, but there are strong links between some serine proteases and arthropathies, in addition to metastatic bone invasion. Understanding the contribution of each of these enzymes to the molecular disease process is crucial to developing effective treatment based on inhibitors or agonists. Serine protease inhibitors have shown promise in reducing the severity of arthritis, but greater specificity is required to avoid undesired systemic effects. © 2009 Bentham Science Publishers Ltd.