948 resultados para PN
Resumo:
In this article, we present the detailed investigations on platinum related midgap state corresponding to E-c -0.52 eV probed by deep level transient spectroscopy. By irradiating the platinum doped samples with high-energy (1.1 MeV) gamma rays, we observed that the concentration of the midgap state increases and follows a square dependence with irradiation dose. However, the concentration of the acceptor corresponding to E-c -20.28 eV remained constant. Furthermore, from the studies on passivation by atomic hydrogen and thermal reactivation, we noticed that the E-c -0.52 eV level reappears in the samples annealed at high temperatures after hydrogenation. The interaction of platinum with various defects and the qualitative arguments based on the law of mass action suggest that the platinum related midgap defect might possibly correspond to the interstitial platinum-divacancy complex (V-Pt-V).
Resumo:
We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG) x NH4I. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte were exposed to a beam of 8 MeV electrons to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples were also quenched at liquid nitrogen temperature and conductivity measurements were made. The ionic conductivity at room temperature exhibits a characteristic double peak for the composition x = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and proton NMR measurements also support this conclusion.
Resumo:
The leader protease (L-pro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968-2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups - Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or onvergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the L-pro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the L-pro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).
Resumo:
The auditory system can detect occasional changes (deviants) in acoustic regularities without the need for subjects to focus their attention on the sound material. Deviant detection is reflected in the elicitation of the mismatch negativity component (MMN) of the event-related potentials. In the studies presented in this thesis, the MMN is used to investigate the auditory abilities for detecting similarities and regularities in sound streams. To investigate the limits of these processes, professional musicians have been tested in some of the studies. The results show that auditory grouping is already more advanced in musicians than in nonmusicians and that the auditory system of musicians can, unlike that of nonmusicians, detect a numerical regularity of always four tones in a series. These results suggest that sensory auditory processing in musicians is not only a fine tuning of universal abilities, but is also qualitatively more advanced than in nonmusicians. In addition, the relationship between the auditory change-detection function and perception is examined. It is shown that, contrary to the generally accepted view, MMN elicitation does not necessarily correlate with perception. The outcome of the auditory change-detection function can be implicit and the implicit knowledge of the sound structure can, after training, be utilized for behaviorally correct intuitive sound detection. These results illustrate the automatic character of the sensory change detection function.
Resumo:
The synchronization of neuronal activity, especially in the beta- (14-30 Hz) /gamma- (30 80 Hz) frequency bands, is thought to provide a means for the integration of anatomically distributed processing and for the formation of transient neuronal assemblies. Thus non-stimulus locked (i.e. induced) gamma-band oscillations are believed to underlie feature binding and the formation of neuronal object representations. On the other hand, the functional roles of neuronal oscillations in slower theta- (4 8 Hz) and alpha- (8 14 Hz) frequency bands remain controversial. In addition, early stimulus-locked activity has been largely ignored, as it is believed to reflect merely the physical properties of sensory stimuli. With human neuromagnetic recordings, both the functional roles of gamma- and alpha-band oscillations and the significance of early stimulus-locked activity in neuronal processing were examined in this thesis. Study I of this thesis shows that even the stimulus-locked (evoked) gamma oscillations were sensitive to high-level stimulus features for speech and non-speech sounds, suggesting that they may underlie the formation of early neuronal object representations for stimuli with a behavioural relevance. Study II shows that neuronal processing for consciously perceived and unperceived stimuli differed as early as 30 ms after stimulus onset. This study also showed that the alpha band oscillations selectively correlated with conscious perception. Study III, in turn, shows that prestimulus alpha-band oscillations influence the subsequent detection and processing of sensory stimuli. Further, in Study IV, we asked whether phase synchronization between distinct frequency bands is present in cortical circuits. This study revealed prominent task-sensitive phase synchrony between alpha and beta/gamma oscillations. Finally, the implications of Studies II, III, and IV to the broader scientific context are analysed in the last study of this thesis (V). I suggest, in this thesis that neuronal processing may be extremely fast and that the evoked response is important for cognitive processes. I also propose that alpha oscillations define the global neuronal workspace of perception, action, and consciousness and, further, that cross-frequency synchronization is required for the integration of neuronal object representations into global neuronal workspace.
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.
Resumo:
Tutkimuksessa etsittiin vastauksia kysymyksiin, mistä yksilöllisyys muodostuu ja miten se ilmenee musliminaisten pukeutumisessa. Vastauksia tutkimuskysymyksiin haettiin teorian ja aineiston vuoropuheluun perustuvalla fenomenologisesti orientoituneella sisällönanalyysilla. Analysoitava aineisto on hankittu haastattelemalla yhdeksää Suomessa asuvaa musliminaista. Tutkimuksessa yksilöllisyyttä pukeutumisessa on tarkasteltu prosessina. Prosessiin vaikuttavina tekijöinä on tarkasteltu yksilön olemusta, personallisuutta, minuutta, identiteettejä, uskontoa, kulttuuria ja sosiaalisia suhteita. Prosessissa keskeistä aineiston perusteella oli positiivisen minuuden kokemuksen tavoittelu, joka tarkoitti naisille intuitiivista oman itsensä tunnistamista ja tyytyväisyyttä peilin heijastamaan kuvaan. Yksilöllisen pukeutumisen voikin sanoa olevan seurausta positiivisen minuuden kokemuksen tavoittelusta, koska jokaiselle naiselle erilainen pukeutuminen antoi tunteen sopivuudesta itselle. Esimerkiksi uskonnolliselle musliminaisille pään peittäminen merkitsee oman minuuden toteutumista, koska hän kokee tuon pukeutumisen olevan uskon mukainen pukeutumistapa. Toiselle musliminaiselle pään peittäminen voi merkitä positiivisen minuuden kokemuksen menettämistä. Yksilöllisyys pukeutumisessa ilmeni monin tavoin. Osa naisista peittää julkisuudessa koko päänsä ja vartalonsa, osa ei peitä päätään ja jotkut pukeutuvat jopa tiukkoihin tai paljastaviin vaatteisiin. Suomessa on myös kasvonsa peittäviä musliminaisia, joita ei kuitenkaan ole mukana tässä tutkimuksessa. Yksilöllisyyttä ilmeni kuitenkin myös samalla tavalla pukeutuvien musliminaisten ryhmässä. Yksilöllisyys pukeutumisessa ilmeni erilaisina vaatekappaleina, hiustyyleinä, valintoina, yksityiskohtina ja väreinä. Yksilöllisyydessä ei kuitenkaan ole kyse vain havaittavasta pukeutumisen erilaisuudesta, vaan siitä, miten kukin musliminainen kuuluu tähän maailmaan ja toteuttaa omaa minuuttaan pukeutumisella. Tämä tarkoittaa sitä, että tutkimuksessa yksilöllisenä pukeutumisena voidaan pitää sitäkin, mikä monen suomalaisen mielestä ei näytä yksilölliseltä. Avainsanat: Yksilöllisyys, minuus, pukeutuminen, islam, naiset, prosessi, kokemus
Resumo:
Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.
Resumo:
Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.
Resumo:
Temporomandibular disorders (TMD) and psychosocial factors reportedly associate. The underlying factors remain partially obscure, however, and further studies are required to clarify the relationships. The aims of this study were thus to assess in a non-patient working population the prevalence of TMD and related symptoms, and to clinically diagnose and follow the natural courses of TMD over a one-year period. In addition, possible comorbidity of temporomandibular and/or neck muscle pain and perceived stress and their impact on work performance were investigated, as well as how various psychosocial aspects relate to TMD. A questionnaire was mailed to all 30- to 55-year-old employees of the Finnish Broadcasting Company Ltd. whose employment in the Helsinki area had lasted at least five years (n = 1784). Of the 1339 subjects, who returned the questionnaire, 241 were examined according to the RDC/TMD and standard neck muscle palpation methods. Clinical signs of temporomandibular and/or neck muscle pain were found in 118 subjects. One-year follow-up TMD examinations were conducted on 211 subjects. The prevalence of frequent painless TMJ-related symptoms was 10%, orofacial pain 7%, neck pain 38%, and headache 15%. TMD diagnoses were: myofascial pain (13%), disc displacements (16%), and arthralgia, osteoarthritis, osteoarthrosis (4%). Chronic myofascial pain was present in 7% and chronic disc displacement with reduction in 11% of the subjects. Symptoms were significantly associated with almost all the studied psychosocial symptoms. Reduced work performance was significantly positively associated with continuous pain, severity of pain, and health stress perception, and according to logistic regression, somatization with the probability of having chronic myofascial pain. It could be concluded based on the results of this study among a non-patient working population that TMD and related symptoms are common and associated with psychosocial factors. Moreover, myofascial pain and disc displacement with reduction are the most common diagnoses of TMD. In addition, self-reported health related stress, and continuous pain in temporomandibular and/or neck muscles are associated with reduced work performance, and somatization is significantly associated with chronic myofascial pain.
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.
Resumo:
The development of many embryonic organs is regulated by reciprocal and sequential epithelial-mesenchymal interactions. These interactions are mediated by conserved signaling pathways that are reiteratively used. Cleidocranial dysplasia (CCD) is a congenital syndrome where both bone and tooth development is affected. The syndrome is characterized by short stature, abnormal clavicles, general bone dysplasia, and supernumerary teeth. CCD is caused by mutations in RUNX2, a transcription factor that is a key regulator of osteoblast differentiation and bone formation. The first aim of this study was to analyse the expression of a family of key signal molecules, Bone morphogenetic protein (Bmp) at different stages of tooth development. Bmps have a variety of functions and they were originally discovered as signals inducing ectopic bone formation. We performed a comparative in situ hybridisation analysis of the mRNA expression of Bmp2-7 from initiation of tooth development to differentiation of dental hard tissues. The expression patterns indicated that the Bmps signal between the epithelial and mesenchymal tissues during initiation and morphogenesis of tooth development, as well as during the differentiation of odontoblasts and ameloblasts. Furthermore, they are also part of the signalling networks whereby the enamel knot regulates the patterning of tooth cusps. The second aim was to study the role of Runx2 during tooth development and thereby to gain better understanding of the pathogenesis of the tooth phenotype in CCD. We analysed the tooth phenotype of Runx2 knockout mice and examined the patterns and regulation of Runx2 gene expression.. The teeth of wild-type and Runx2 mutant mice were compared by several methods including in situ hybridisation, tissue culture, bead implantation experiments, and epithelial-mesenchymal recombination studies. Phenotypic analysis of Runx2 -/- mutant tooth development showed that teeth failed to advance beyond the bud stage. Runx2 expression was restricted to dental mesenchyme between the bud and early bell stages of tooth development and it was regulated by epithelial signals, in particular Fgfs. We searched for downstream targets of Runx2 by comparative in situ hybridisation analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 -/- teeth. Shh expression was absent from the enamel knot in the lower molars of Runx2 -/- and reduced in the upper molars. In conclusion, these studies showed that Runx2 regulates key epithelial-mesenchymal interactions that control advancing tooth morphogenesis and histodifferentiation of the epithelial enamel organ. In addition, in the upper molars of Runx2 mutants extra buddings occured at the palatal side of the tooth bud. We suggest that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds. Accordingly, we propose that RUNX2 haploinsuffiency in humans causes incomplete inhibition of successional tooth formation and as a result supernumerary teeth.
Resumo:
Ternary metal complexes involving vitamin B6 with formulas [CO",(PN-H)](anCdI [OC)'(bpy)(PN)Cl]C10(.bpHy 0 = 2,2'-bipyridine, PN = neutral pyridoxine, PN-H = anionic pyridoxine) have been prepared for the first time and characterized by means of magnetic and spectroscopic measurements. The crystal structures of the compounds have also been determined. [CO(PN-H)](CcryIsOta,l)lize s in the space group P2,/c with a = 18.900 (3) A, b = 8.764 (1) A, c = 20.041 (2) A,p = 116.05 (l)', and Z = 4 and [Cu(bpy)(PN)C1]C104-H20in the space group Pi with a = 12.136 (5) A, b = 13.283 (4) A,c = 7.195 (2) A, a = 96.91 (Z)', 0 = 91.25 (3)', y = 71.63 (3)', and Z = 2. The structures were solved by the heavy-atom method and refined by least-squares techniques to R values of 0.080 and 0.042 for 3401 and 2094 independent reflections, respectively. Both structures consist of monomeric units. The geometry around Co(II1) is octahedral and around Cu(I1) is distorted square pyramidal. In [CO(PN-H)]t(wCo IoxOy~ge)n~s ,fro m phenolic and 4-(hydroxymethyl) groups of PN-H and two nitrogens from each of two bpy's form the coordination sphere. In [Cu(bpy)(PN)C1]C104.H20o ne PN and one bpy, with the same donor sites, act as bidentate chelates in the basal plane, with a chloride ion occupying the apical position. In both structures PN and PN-H exist in the tautomeric form wherein pyridine N is protonated and phenolic 0 is deprotonated. However, a novel feature of the cobalt compound is that PN-H is anionic due to the deprotonation of the 4-(hydroxymethyl) group. The packing in both structures is governed by hydrogen bonds, and in the copper compound partial stacking of bpy's at a distance of -3.55 also adds to the stability of the system. Infrared, NMR, and ligand field spectroscopic results and magnetic measurements are interpreted in light of the structures.
Resumo:
A simple graphical method is presented for velocity and acceleration analysis of complex mechanisms possessing low or high degree of complexity. The method is iterative in character and generally yields the solution within a few iterations. Several examples have been worked out to illustrate the method.