433 resultados para PILLAR MICROCAVITIES
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
Real estate, or property development, is considered one of the pillar industries of the Chinese economy. As a result of the opening up of the economy as well as the "macro-control" policy of the Central Chinese Government to moderate the frenetic pace of growth of the economy, the real estate industry has faced fierce competition and ongoing change. Real estate firms in China must improve their competitiveness in order to maintain market share or even survive in this brutally competitive environment. This study developed a methodology to evaluate the competitiveness of real estate developers in the China and then used a case study to illustrate the effectiveness of the evaluation method. Four steps were taken to achieve this. The first step was to conduct a thorough literature review which included a review of the characteristics of real estate industry, theories about competitiveness and the competitive characteristics of real estate developers. Following this literature review, the competitive model was developed based on seven key competitive factors (the 'level 1') identified in the literature. They include: (1) financial competency; (2) market share; (3) management competency; (4) social responsibility; (5) organisational competency; (6) technological capabilities; and, (7) regional competitiveness. In the next step of research, the competitive evaluation criteria (the 'level 2') under each of competitive factors (the 'level 1') were evaluated. Additionally, there were identified a set of competitive attributes (the 'level 3') under each competitive criteria (the 'level 2'). These attributes were initially recognised during the literature review and then expanded upon through interviews with multidisciplinary experts and practitioners in various real estate-related industries. The final step in this research was to undertake a case study using the proposed evaluation method and attributes. Through the study of an actual real estate development company, the procedures and effectiveness of the evaluation method were illustrated and validated. Through the above steps, this research investigates and develops an analytical system for determining the corporate competitiveness of real estate developers in China. The analytical system is formulated to evaluate the "state of health" of the business from different competitive perspectives. The result of empirical study illustrates that a systematic and structured evaluation can effectively assist developers in identifying their strengths and highlighting potential problems. This is very important for the development of an overall corporate strategy and supporting key strategic decisions. This study also provides some insights, analysis and suggestions for improving the competitiveness of real estate developers in China from different perspectives, including: management competency, organisational competency, technological capabilities, financial competency, market share, social responsibility and regional competitiveness. In the case study, problems were found in each of these areas, and they appear to be common in the industry. To address these problems and improve the competitiveness and effectiveness of Chinese real estate developers, a variety of suggestions are proposed. The findings of this research provide an insight into the factors that influence competitiveness in the Chinese real estate industry while also assisting practitioners to formulate strategies to improve their competitiveness. References for studying the competitiveness of real estate developers in other countries are also provided.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Creative industries in China provides a fresh account of China’s emerging commercial cultural sector. The author shows how developments in Chinese art, design and media industries are reflected in policy, in market activity, and grassroots participation. Never has the attraction of being a media producer, an artist, or a designer in China been so enticing. National and regional governments offer financial incentives; consumption of cultural goods and services have increased; creative workers from Europe, North America and Asia are moving to Chinese cities; culture is increasingly positioned as a pillar industry. But what does this mean for our understanding of Chinese society? Can culture be industrialised following the low-cost model of China’s manufacturing economy. Is the national government really committed to social liberalisation? This engaging book is a valuable resource for students and scholars interested in social change in China. It draws on leading Chinese scholarship together with insights from global media studies, economic geography and cultural studies.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Pillar of salt: (3 hand-applied silver gelatin photographs) Statement: For women moving into new experiences and spaces, loss and hardship is often a price to be paid. These courageous women look back to things they have overcome in order to continue to grow.
Resumo:
The emerging ‘responsibility to protect’ (R2P) principle presents a significant challenge to the BRICS (Brazil, Russia, India, China and South Africa) states’ traditional emphasis on a strict Westphalian understanding of state sovereignty and non-interference in domestic affairs. Despite formally endorsing R2P at the 2005 World Summit, each of the BRICS has, to varying degrees, retained misgivings about coercive measures under the doctrine’s third pillar. This paper examines how these rising powers engaged with R2P during the 2011–2012 Libyan and Syrian civilian protection crises. The central finding is that although all five states expressed similar concerns over NATO’s military campaign in Libya, they have been unable to maintain a common BRICS position on R2P in Syria. Instead, the BRICS have splintered into two sub-groups. The first, consisting of Russia and China, remains steadfastly opposed to any coercive measures against Syria. The second, comprising the democratic IBSA states (India, Brazil and South Africa) has displayed softer, more flexible stances towards proposed civilian protection measures in Syria, although these three states also remain cautious about the implementation of R2P’s coercive dimension. This paper identifies a number of factors which help to explain this split, arguing that the failure to maintain a cohesive BRICS position on R2P is unsurprising given the many internal differences and diverging national interests between the BRICS members. Overall, the BRICS’ ongoing resistance to intervention is unlikely to disappear quickly, indicating that further attempts to operationalize R2P’s third pillar may prove difficult.
Resumo:
ZIF-8 thin layer has been synthesized on the asymmetric porous polyethersulfone (PES) substrate via secondary seeded growth. Continuous and dense ZIF-8 layer, containing microcavities, has good affinity with the PES support. Single gas permeance was measured for H2, N2, CH4, O2, and Ar at different pressure gradients and temperatures. Molecular sieving separation has been achieved for selectively separating hydrogen from larger gases. At 333 K, the H2 permeance can reach ∼4 × 10−7 mol m−2 s−1 Pa−1, and the ideal separation factors of H2 from Ar, O2, N2, and CH4 are 9.7, 10.8, 9.9, and 10.7, respectively. Long-term hydrogen permeance and H2/N2 separation performance show the stable permeability of the derived membranes.
Resumo:
How and why football referees made decisions was investigated. A constructivist grounded theory methodology was undertaken to tap into the experiential knowledge of referees. The participant cohort comprised 7 A-League referees (aged 23 to 35) and 8 local Brisbane league referees (aged 20 to 50), spanning the lowest to highest levels of competition in men’s football in Australia. Results found that referees used ‘four pillars’ to underpin their judgments, these were conceptual notions of: safety, fairness, accuracy and entertainment. A fifth pillar ‘consistency’ referred to the referee’s ‘contextual sensitivity’. Results were explained using an ecological dynamics framework that emphasises the individual-environment scale of analysis. It was concluded that interacting constraints shape emergent decision-making in referees which are nested in task goals.
Resumo:
Integrated multi-professional teams are crucial to ongoing health system development and need to be responsive to the increasing demands of health care such as the burgeoning rate of chronic diseases. Integrated multi-professional teams also constitute a fundamental pillar of health service delivery in primary care worldwide. The aim of these teams is to deliver care beyond simple co-location of healthcare providers, through implementing integrated practice together, rather than as a group of independent disciplines. The challenges of developing and implementing integrated multi-professional teams in busy primary care clinical environments is addressed in this paper through a conceptual framework specifically designed for primary care and a case study analysis of examples of teamwork in Australian primary care.
Resumo:
This paper uses theoretical resources from the sociology of education to consider the teaching of sociology in teacher education programs in Australia. Once a disciplinary ‘pillar’ of teacher education, sociology’s contribution has become less explicit while more integrated, with consequences for disciplinary identity. Here we explore how sociology is taught in teacher education curricula on two fronts. Firstly we outline how sociology is embedded as one of a number of competing perspectives in foundational studies, and its pedagogic consequences. Then we consider the powerful contribution of sociology in literacy studies, amidst public debate about literacy performance. The analysis draws on Bernstein’s (2000) distinction between singular disciplinary curriculum design and practically-oriented regional curriculum design. We seek to trouble the commonsense binary between theory and practice that structures debates around professional education in higher education more broadly, and to dignify service sociology as a valuable, generative site for the discipline’s future.
Resumo:
The practices and public reputation of mining have been changing over time. In the past, mining operations frequently stood accused of being socially and environmentally disruptive, whereas mining today invests heavily in ‘socially responsible’ and ‘sustainable’ business practices. Changes such as these can be witnessed internationally as well as in places like Western Australia (WA), where the mining sector has matured into an economic pillar of the state, and indeed the nation in the context of the recent resources boom. This paper explores the role of mining in WA, presenting a multi-disciplinary perspective on the sector's contribution to sustainable development in the state. The perspectives offered here are drawn from community-based research and the associated academic literature as well as data derived from government sources and the not-for-profit sector. Findings suggest that despite noteworthy attitudinal and operational improvements in the industry, social, economic and environmental problem areas remain. As mining in WA is expected to grow in the years to come, these problem areas require the attention of business and government alike to ensure the long-term sustainability of development as well as people and place.
Resumo:
The intra-state humanitarian crises in Libya and Syria have led to renewed debate over the content and implementation of pillar three of the responsibility to protect (R2P). This paper examines the BRICS’ (Brazil, Russia, India, China, South Africa) current perspectives on R2P and their recent efforts to shape the concept’s evolution. While Brazil’s “Responsibility while Protecting” (RwP) proposal has been widely discussed, the central focus here is on the lesser-known, semi-official Chinese idea of “Responsible Protection” (RP). Like RwP, RP proposes decision-making criteria and accountability mechanisms for UN-authorised military intervention under R2P’s third pillar. This paper argues that although RP draws heavily on previous R2P proposals such as the original 2001 ICISS report and Brazil’s RwP, by amalgamating and re-packaging these earlier ideas in a more restrictive form the Chinese initiative represents a new and distinctive interpretation of R2P. However, as it currently stands, some aspects of RP appear to be framed too strictly to provide workable guidelines for determining the permissibility of R2P military intervention, and would, therefore, benefit from clarification and refinement. Of broader significance, China’s RP and Brazil’s RwP initiatives point to the growing willingness of rising, non-Western powers to articulate and promote their own normative preferences on sovereignty, intervention and global governance. This development has potential implications both for R2P’s evolution and for the structure of the international system.
Resumo:
This article assesses the extent to which the recently formulated Chinese concept of “Responsible Protection” (RP) offers a valuable contribution to the normative debate over R2P’s third pillar following the controversy over military intervention in Libya. While RP draws heavily on previous proposals such as the original 2001 ICISS report and Brazil’s “Responsibility while Protecting” (RwP), by amalgamating and re-packaging these earlier ideas in a more restrictive form the initiative represents a new and distinctive interpretation of R2P. However, some aspects of RP are framed too narrowly to provide workable guidelines for determining the permissibility of military intervention for civilian protection purposes, and should therefore be clarified and refined. Nevertheless, the Chinese proposal remains significant because it offers important insights into Beijing’s current stance on R2P. More broadly, China’s RP and Brazil’s RwP initiatives illustrate the growing willingness of rising, non-Western powers to assert their own normative preferences on sovereignty, intervention and global governance.