784 resultados para PHENANTHRENE SORPTION
Resumo:
This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water sorption isotherms for vacuum-dried persimmon pulp (PP) powder were determined in the temperature range of 20-50C, and the effects of maltodextrin (MD) or gum arabic (GA) addition on the water sorption behavior of the dried powders were analyzed. Several models were evaluated to fit the experimental data and the Guggenheim-Anderson-de Boer model was selected as the most adequate to describe the observed behavior. Addition of encapsulants affected the isotherms: at the same water activity, PP powder with added GA (PP + GA) or MD (PP + MD) presented lower equilibrium water content than pure PP and were less affected by temperature variations. Samples of PP + MD presented lower equilibrium moisture content than those of PP + GA. The isosteric heats of sorption of pulp powders with encapsulants were higher (less negative) than those of PP, suggesting that there are more active polar sites in PP than in pulp powder containing encapsulants.PRACTICAL APPLICATIONSThe choice of persimmon to carry out this work was due to the large persimmon production available in Brazil; moreover, persimmon pulp is rich in vitamin C, vitamin A and iron, as well as in phenolic compounds. Drying of fruit pulps with high sugar content presents technical difficulties because the hygroscopicity and thermoplasticity of the resulting powders when exposed to high temperature and relative humidity. For this reason, addition of high-molar-mass biopolymers, such as maltodextrin or gum arabic, is a strategy to aid drying and to improve storage stability. Knowledge of water sorption isotherms and net isosteric heats of sorption is important to various food processing operations, including drying, storage and packaging. They are useful in calculating time and energy consumptions during drying, modeling moisture changes during storage and predicting shelf life of food products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The net isosteric heat and entropy of water sorption were calculated for kiwifruit, based on sorption isotherms obtained by the static gravimetric method at different temperatures (20 to 70 degreesC). The Guggenheim-Anderson-deBoer equation was fitted to the experimental data, using direct non-linear regression analysis; the agreement between experimental and calculated values was satisfactory. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of DeltaH versus DeltaS provided the isokinetic temperature, T-B = 450.9 +/- 7.7 K, indicating an enthalpy-controlled desorption process over the whole range of moisture content considered.
Resumo:
The net isosteric heat and entropy of water sorption were calculated for plum, based on sorption isotherms obtained by the static gravimetric method at different temperatures (20 to 70 degrees C). The Guggenheim-Anderson-deBoer model was applied to the experimental data giving a good agreement between experimental and calculated values. The net isosteric heat of water sorption, estimated by applying Claussius-Clapeyron equation to sorption isotherms, was found to be different for plum skin and pulp, mainly at low moisture contents, and could be well adjusted by an empirical exponential relationship. Plots of enthalpy in contrast to entropy provided the isokinetic temperatures for skin and pulp, indicating an enthalpy-controlled sorption process. Thermodynamic data on water sorption for plums are not found in literature, as opposed to prunes for which the data are abundant.
Resumo:
The adsorption isotherms of MCl(2) (M = Mn, Ni, Cu, Zn and Cd) and FeCl3 by silica gel chemically modified with benzimidazole molecules (= SI(CH2)(3)-NC7H5N) were studied in ethanol solution at 298 K. A column made of modified silica was used to adsorb and preconcentrate the above metal ions from ethanol solution. Elution was done with 0.1 M hydrochloric acid in an ethanol/water mixture having a mole fraction of water of 0.8. The material was applied in the preconcentration of metal ions from commercial ethanol normally used as engine fuel.
Resumo:
Silica gel, chemically modified with 2,5-dimercapto-1,3,4-thiadiazole [=Si(CH2)(3)-NC2HNS3], abbreviated as SiB, was used to adsorb metal ions from ethanol by both batch and column techniques. Elution of Cu(II) was done with a solvent mixture of acetone and hydrochloric acid (9:1 v/v). Zn(II), Cd(II), Ni(II), Pb(II), Co(II) and Fe(III) were eluted with 0.5 mol l(-1) HC1 in ethanol solution. The modified silica was applied in the preconcentration of metal ions from commercial ethanol, normally used as engine fuel. The method is suitable for quantifying these metals at low mu g l(-1) levels.
Resumo:
Moisture equilibrium data of pineapple pulp (PP) powders with and without additives - 18% maltodextrin (MD) or 18% gum Arabic (GA) - were determined at 20, 30, 40 and 50 degrees C by using the static gravimetric method in a water activity range of 0.06-0.90. The obtained isotherms were sigmoid, typical type 111, and the Guggenhein-Anderson-de Boer (GAB) model was fitted to the experimental data of equilibrium moisture content versus water activity. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples PP + GA and PP + MD presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of pulp powders with additives were higher (less negative) than those of pineapple pulp powders, suggesting that there are more active polar sites in the product without addition of GA or MD. An empirical exponential relationship could describe the heat of sorption dependence on the material moisture content. (C) 2007 Elsevier Ltd. All rights reserved.