1000 resultados para Oxide ceramics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ba(Zr0.10Ti0.90)O3 (BZT10) and W+ 6 substituted BZT ceramics (BZT10:W) were prepared by mixed oxide method. The effect of W+ 6 addition in the BZT was evaluated by X-ray diffraction (XRD), dilatometer analysis, microstructural and dielectrical properties. When tungsten is introduced in the BZT lattice, a decrease in the grain size and shift on Curie temperature to lower value besides broadening of dielectric permittivity is evident. This is due repulsion between tungsten and their nearest neighbors leading to a structure which is tetragonal distorted. The sintering temperature is reduced when tungsten is introduced in the BZT lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne particle abrasion at a designated area of the frameworks (8 x 3 mm). Bonder and opaque ceramic were applied on the frameworks, and then the corresponding ceramic (Triceram, Super Porcelain Ti-22, Vita Titankeramik) was fired onto them (thickness: 1 mm). Half of the specimens from each ceramic-metal combination were randomly tested without aging (only water storage at 37 degrees C for 24 hours), while the other half were mechanically loaded (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and thermocycled (3,000 cycles, between 5-55 degrees C, dwell time of 13 seconds). After the flexural strength test, failure types were noted. Mechanical and thermal cycling decreased the mean flexural strength values significantly (p<0.05) for all the three ceramic-cpTi combinations tested when compared to the control group. In all the three groups, failure type was exclusively adhesive at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface except for a visible oxide layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain and vacancy clusters behavior of polycrystalline vanadium (V) and tungsten (W)-doped Ba[Zr(0.10)Ti(0.90)]O(3), (BZT:2%V) and (BZT:2%W) ceramics obtained by the mixed oxide method was evaluated. Substitution of V and W reduces the distortion of octahedral clusters, decreasing the Raman modes. Electron paramagnetic resonance data indicate that the addition of dopants leads to defects and symmetry changes in the BZT lattice. Remnant polarization and coercive field are affected by V and W substitution due the electron-relaxation mode. The unipolar strain E curves as a function of electric field reach its maximum value for BZT:2%V and BZT:2%W ceramics. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2 ceramics doped with ZnO and WO3 were prepared by mixed oxide method. The effect of ZnO and WO3 additives could be explained by the substitution of Sn4+ by Zn2+ and W6+. The addition of WO3 inhibits the grain growth due to the segregation of SnZnWO8 and ZnWO6 at the grain boundaries without strong influence on the densification process. The electrical characterization (log E x log J) shows that the ternary system SnO2-ZnO-WO3 exhibits a very high resistivity of around 10(14) Omega M. Independently of the WO3 concentration, the electrical conductivity of the Sn02-ZnO-WO3 system is always lower than that of the undoped tin dioxide. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addition of 0.5 mol% of CoO into SnO2 promotes densification of this oxide to 99% of the theoretical density during sintering. TEM in this system reveals that after sintering at 1210 degrees C a secondary phase of Co2SnO4 is precipitated at the SnO2 grain boundaries during cooling. This phase is formed by diffusion of Co ions from the bulk to the grain boundary during sintering leaving needle-like defects at the grain bulk. The high resolution TEM micrograph of this system sintered at 1210 degrees C and 1400 degrees C showed an amorphous grain boundary region low in cobalt, indicating that the Co2SnO4 phase is precipitated from this region. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work presents results on natural sintering of tin dioxide ceramics, prepared by a chemical route or by conventional mixing and containing manganese (X-Mn = Mn/(Mn + Sn)(atomic) with 0 less than or equal to X(Mn)less than or equal to 0.15). This cation, which is practically insoluble in SnO2 network, stays at the grain surface. During thermal treatment (500 degrees C less than or equal to T-s less than or equal to 1400 degrees C), as long as the manganese surface concentration is lower than a critical value, equal to 5.10(-6) mol m(-2), no densification takes place. As soon as this value is reached, densification and grain growth occur simultaneously. The shrinkage kinetics is fast and high rho/rho(t) values can be obtained (for example. rho/rho(t)=0.95 for T-s=1300 degrees C and X-Mn=0.004). The dependence between manganese content, manganese distribution, grain size and sintering behaviour is also discussed. (C) 1998 Published by Elsevier B.V. Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaTiO3 is usually doped to achieve the temperature stability required by device applications, as well as to obtain a large positive temperature coefficient anomaly of resistivity (PTCR). Uniform distribution of dopants among the submicron dielectric particles is the key for optimal control of grain size and microstructure to maintain a high reliability. The system Ba0.84Pb0.16TiO3 was synthesized from high purity BaCO3, TiO2, PbO oxide powders as raw materials. Sb2O3, MnSO4 and ZnO were used as dopants and Al2O3, TiO2 and SiO2 as grain growth controllers. Phase composition was analyzed by using XRD and the microstructure was investigated by SEM. EDS attached to SEM was used to analyze phase composition specially related to abnormal grain growth. Electrical resistivities were measured as a function of temperature and the PTCR effect characterized by an abrupt increase on resistivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2-based varistors doped with ZnO and WO3 were prepared by mixed oxide method. Experimental evidence shows that the increase in ZnO amount increases the volume and microstrain of unit cell while the WO3 promotes a decrease. The effect of ZnO and WO3 additives could be explained by the substitution of Sn4+ by Zn2+ and W6+. The addition of WO3 inhibits the grain growth due to the segregation in the grain boundary without influence in the densification of the samples. Besides that, an increase in the electrical resistance of the SnO2-ZnO-WO3 system was observed independent of the WO3 concentration. (c) 2005 Elsevier B.V. All rights reserved.