991 resultados para Oriented films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700° C in tube oven. Structural, morphological, and electrical properties of the LaNiO 3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 nm and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cultural policy settings attempting to foster the growth and development of the Australian feature film industry in era of globalisation are coming under increasing pressure. Global forces and emerging production and distribution models are challenging the “narrowness” of cultural policy – mandating a particular film culture, circumscribing certain notions of value and limiting the variety of films produced through cultural policy driven subvention models. Australian horror film production is an important case study. Horror films are a production strategy well suited to the financial limitations of the Australian film industry with competitive advantages for producers against international competitors. However, emerging within a “national” cinema driven by public subsidy and social/cultural objectives, horror films – internationally oriented with a low-culture status – have been severely marginalised within public funding environments. This paper introduces Australian horror film production, and examines the limitations of cultural policy, and the impacts of these questions for the Producer Offset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser deposition was used to deposit YBaCuO thin films on Yttria-stabilized Zirconia substrates, at substrate holder temperatures of 710-765 °C. We observed a transition from singlecrystalline to polycrystalline growth at a temperature of ∼750 °C. All films were highly c-axis oriented and had critical temperatures between 89.5 and 92 K. In the twinned singlecrystalline films, the lowest measured microwave surface resistance was 0.37 mΩ at 4.2 K and 21.5 GHz, and the highest critical current 5×106 A/cm2 at 77 K. The polycrystalline films had up to a factor of 50 higher surface resistance and a factor of 10 lower critical current. A meander line resonator made of a film on a LaAlO3 substrate, showed a microwave surface resistance of 5μΩ at 4.2 K and 2.5 GHz. © 1991.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early stages of growth of high quality YBa2Cu 3O7-δ (YBCO) films grown on (001) Y-ZrO2 (YSZ) substrates by pulsed laser deposition have been studied using a combination of atomic force microscopy and transmission electron microscopy. A one unit cell thick YBCO layer and relatively large CuO particles formed in the initial stages. Additional YBCO grew on top of the first layer in the form of one or a few unit cell high c-axis oriented islands about 30 nm in diameter. The rounded islands subsequently coalesced into faceted domains. Elongated Y 2BaCuO5 particles nucleated after the first layer of YBCO. A highly textured BaZrO3 layer formed between the YSZ and the YBCO with a cube-on-cube dominant orientation relationship with respect to the YBCO film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-axis-oriented YBa2Cu3O7-x (YBCO) thin films were laser deposited on (001) yttria-stabilized ZrO2 (YSZ) substrates with different surface morphologies. The in-plane orientation of the films on smooth substrates was sensitive to the deposition conditions, often resulting in mixed orientations. However, a strongly dominating [110] YBCO//[110]YSZ orientation was obtained at a deposition temperature of 770°C. Films on substrates with surface steps, induced by depositing a homoepitaxial buffer layer or by thermally annealing the substrate, had a [110]YBCO//[100]YSZ orientation when deposited at the same temperature. It was concluded that the [110]YBCO//[100] YSZ orientation was promoted by a graphoepitaxial mechanism. Films prepared under identical conditions on smooth and stepped substrates grew with extended c axes on the former. It is proposed that the extension can be induced by disorder, invoked by a low oxygen pressure and a low density of adsorption sites. The disorder may be eliminated by either an increase of the oxygen pressure or an increase of the density of adsorption sites in the form of steps. The film microstructure influenced the microwave surface resistance, which was similar for films with one exclusive in-plane orientation and higher for films with mixed orientations. The films on the stepped surfaces had superior superconducting properties; inductive measurements gave a Tc onset of 88 K, a ΔT(90%-10%) c of 0.2 K, and the transport jc was 1.5×106 A/cm2 at 83 K, for films on substrates with homoepitaxial buffer layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr 0.2TiO0.8)O3 (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO3 electrodes exhibit preferential upward polarization (C) whilst the same films grown on the (La,Sr)CoO 3-electrodes are polarized downward (C-). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO3 solution under UV irradiation. PZT surfaces with preferential C orientation possess a more active surface for metal reduction than their C- counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled monomolecular films of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) and 2,9,16,23-tetraaminophthalocyanatocobalt(II) (4β-CoIITAPc) on Au surfaces were prepared by spontaneous adsorption from solution. These films were characterized by cyclic voltammetry and Raman spectroscopy. Both the surface coverage (Γ) and intensity of the in-plane stretching bands obtained from Raman studies vary for these monomolecular films, indicating different orientations adopted by them on Au surfaces. The 4α-CoIITAPc-modified electrode exhibits an E1/2 of 0.35 V, while the 4β-CoIITAPc-modified electrode exhibits an E1/2 of 0.19 V, corresponding to the CoII/CoIII redox couple in 0.1 M H2SO4. The Γ estimated from the charge associated with the oxidation of Co(II) gives (2.62 ± 0.10) × 10-11 mol cm-2 for 4α-CoIITAPc and (3.43 ± 0.14) × 10-10 mol cm-2 for 4β-CoIITAPc. In Raman spectral studies, the intensity ratio between in-plane phthalocyanine (Pc) stretching and the Au−N stretching was found to be 6.6 for 4β-CoIITAPc, while it was 1.6 for 4α-CoIITAPc. The obtained lower Γ and intensity ratio values suggest that 4α-CoIITAPc adopts nearly a parallel orientation on the Au surface, while the higher Γ and intensity ratio values suggest that 4β-CoIITAPc adopts a perpendicular orientation. The electrochemical reduction of dioxygen was carried out using these differently oriented Pc's in phosphate buffer solution (pH 7.2). Both the Pc's catalyze the reduction of dioxygen; however, the 4α-CoIITAPc-modified electrode greatly reduces the dioxygen reduction overpotential compared to 4β-CoIITAPc-modified and bare Au electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study undertaken in Hervey Bay, Queensland, investigated the potential of creating an indigenous agribusiness opportunity based on the cultivation of indigenous Australian vegetables and herbs. Included were warrigal greens (WG) (Tetragonia tetragonioides), a green leafy vegetable and the herb sea celery (SC) (Apium prostratum); both traditional foods of the indigenous population and highly desirable to chefs wishing to add a unique, indigenous flavour to modern dishes. Packaging is important for shelf life extension and minimisation of postharvest losses in horticultural products. The ability of two packaging films to extend WG and SC shelf life was investigated. These were Antimisted Biaxial Oriented Polypropylene packaging film (BOPP) without perforations and Antifog BOPP Film with microperforations. Weight loss, packaging headspace composition, colour changes, sensory differences and microbial loads of packed WG and SC leaves were monitored to determine the impact of film oxygen transmission rate (OTR) and film water vapour transmission (WVT) on stored product quality. WG and SC were harvested, sanitised, packed and stored at 4°C for 16 days. Results indicated that the OTR and WVT rates of the package film significantly (PKLEINERDAN0.05) influenced the package headspace and weight loss, but did not affect product colour, total bacteria, yeast and mould populations during storage. There was no significant difference (PGROTERDAN0.05) in aroma, appearance, texture and flavour for WG and SC during storage. It was therefore concluded that a shelf life of 16 days at 4°C, where acceptable sensory properties were retained, was achievable for WG and SC in both packaging films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.