818 resultados para Organophosphate, occupational exposure, baseline
Resumo:
"March 1988."
Resumo:
Issued March 1976.
Resumo:
PB 250 424.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Acknowledgements Funding: Chest, Heart and Stroke Scotland, grant ref. R13/A148. The funder had no role in study design, data collection, analysis and interpretation, writing of the manuscript, and in the decision to submit the manuscript for publication. All authors had full access to all the data in the study. The corresponding author had final responsibility for the decision to submit for publication.
Resumo:
Background: Very few studies regarding fungal and particulate matter (PM) exposure in feed industry have been reported, although such contaminants are likely to be a significant contributing factor to several symptoms reported among workers. The purpose of this study has been to characterize fungal and dust exposure in one Portuguese feed industry. Material and Methods: Air and surface samples were collected and subject to further macro- and microscopic observations. In addition we collected other air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from Aspergillus fumigatus and Aspergillus flavus complexes as well as Stachybotrys chartarum. Additionally, two exposure metrics were considered – particle mass concentration (PMC), measured in 5 different sizes (PM0.5, PM1, PM2.5, PM5, PM10), and particle number concentration (PNC) based on results given in 6 different sizes in terms of diameter (0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm). Results: Species from the Aspergillus fumigatus complex were the most abundant in air (46.6%) and in surfaces, Penicillium genus was the most frequently found (32%). The only DNA was detected from A. fumigatus complex. The most prevalent in dust samples were smaller particles which may reach deep into the respiratory system and trigger not only local effects but also the systemic ones. Conclusions: Future research work must be developed aiming at assessing the real health effects of these co-exposures.
Resumo:
Risk assessment considerations - The concept that “safe levels of exposure” for humans can be identified for individual chemicals is central to the risk assessment of compounds with known toxicological profiles. Selection of agents for combination chemotherapy regimens involves minimize overlapping of mechanisms of action, antitumor activity and toxicity profile. Although the toxicological profile and mechanism of action of each individual drug is well characterized, the toxicological interactions between drugs are likely, but poorly established at occupational exposure context. The synergistic nature of interactions may help in understanding the adverse health effects observed in healthcare workers, where exposure situations are characterized by complex mixtures of chemical agents, and the levels of individual exposing agents are often not sufficiently high to explain the health complaints. However, if a substance is a genotoxic carcinogen, this would be the “lead effect”; normally, no OEL based on a NOEL would be derived and the level would be set so low that it would be unlikely that other effects would be expected. Aim of the study - Recently research project developed in Portuguese Hospitals characterize the occupational exposure to antineoplastic agents and the health effects related. The project aimed to assess exposure of the different risk groups that handle antineoplastic agents in the hospital setting, namely during preparation and administration of these drugs. Here it is presented and discussed the results in a study developed in two hospitals from Lisbon.
Resumo:
Purpose - This study intended to characterize fungal contamination in two swine farms, in one feed production unit, and also in one swine slaughterhouse. We aimed to identify where the highest occupational exposure to Aspergillus spp. was detected during the production line.
Resumo:
Workers from feed production often develop allergic respiratory symptoms and fungi are likely to be a significant contributing factor to these symptoms. This study intended to characterize fungal contamination in two feed production units, one for poultry and other for swine consumption. We aimed at identifying which unit presented the highest risk of occupational exposure to Aspergillus spp.
Resumo:
Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane one is of the greatest volume industrial chemicals utilized in the world with increased production every year. Environmental exposure to this xenoestrogen is considered a generalized phenomenon with a Tolerable Daily Intake (TDI) of4 µg/kg body weight/day established by the European Food Safety Authority. Several studies have focused in estimate human daily intake and potential associated health effects of environmental exposures, however despite of the massive BPA production and consumption in European countries, with policarbonate and epoxy resins as the major applications, occupational exposure to BPA have been overlooked and considered safe by the European authorities.
Resumo:
Climate changes and their effects on fungal distribution and activity are aspects of concern regarding the human exposure to mycotoxins. An exhaustive search was made for papers available in scientific databases reposrting the influence that climate cchange has on fungi and mycotoxins. Also a review regarding fungal burden, collected between 2010 and 2015 in different settings, was done to support the discussion about future fungi and mycotoxins ocuupational exposure. A. flavus complex, E. graminerarum complex and F. verticilliodes were the most reported to be influenced by climate changes. We noted also that the analyzed Portuguese settings presented already an occupational problem due to their fungal burden. It will be important to know future climate changes to select what complexes/species and strains, and consequently the mycotoxins, we should consider as indicators of an occupational problem. In addition, epidemiologic studies are needed to increase knowledge about potential health effects related with the exposure to both risk factors.
Resumo:
Occupational exposure assessment can be a challenge due to several factors being the most important the costs associate and the result's dependence from the conditions at the time of sampling. Conducting a task-based exposure assessment allow defining better control measures to eliminate or reduce exposure since more easily identifies the task with higher exposure. A research study was developed to show the importance of task-based exposure assessment in four different settings (bakery, horsemanship, waste sorting and cork industry). Measurements were performed using a portable direct-reading hand-held equipment and were conducted near the workers nose during tasks performance. For each task were done measurements of approximately 5 minutes. It was possible to detect the task in each setting that was responsible for higher particles exposure allowing the priority definition regarding investments in preventive and protection measures.
Resumo:
Background: The majority of studies investigated ambient particles, although in most industrialized countries people spend most of their time indoors and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor tasks, including cleaning tasks. Objective: To characterize the occupational exposure to particles during cleaning of hotel's rooms. Methodology: Measurements of mass concentration and particle number concentration were performed before and during cleaning tasks in two rooms with different floor types (wood and carpet) with the equipment Lighthouse, model 3016 IAQ. Results: Considering mass concentration, particles with higher were responsable for higher leves of contamination, particularly PM5.0 and PM10.0. However, considering the particle number concentration, the smaller particle size obtained the higher values. Conclusion: It was observed higher number of particles of the smaller size in all tasks, which is associated with worse health effects. It was observed that the room with wood in the floor has lower values when compared to the room with carpet. The tasks with greater exposure were the 'vacuuming' and 'clean up powder'.
Resumo:
Aflatoxin B1 (AFB1) is a secondary metabolite produced by the fungi Aspergillus flavus and is the most potent hepatocarcinogen known in mammals and has been classified by the International Agency of Research on Cancer as Group 1 carcinogen. Although dietary exposure to AFB1 has been extensively documented, there are still few studies dedicated to the problem of occupational exposure. Considering recent findings regarding AFB1 occupational exposure in poultry production, it was considered relevant to clarify if there is also exposure in poultry slaughterhouses. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Thirty workers from a slaughterhouse were enrolled in this study. A control group (n = 30) was also considered in order to know AFB1 background levels for Portuguese population. Fourteen workers (47.0%) showed detectable levels of AFB1 with values from 1.06 to 4.03ng ml(-1), with a mean value of 1.73ng ml(-1). No AFB1 was detected in serum of individuals used as controls. Despite uncertainties regarding the exposure route that is contributing more to exposure (inhalation or dermal) is possible to state that exposure to AFB1 is occurring in the slaughterhouse studied. It seems that reducing AFB1 contamination in poultry production can have a positive result in this occupational setting.
Resumo:
Antineoplastic drugs are a heterogeneous group of chemicals used in the treatment of cancer, and have been proved by IARC to be mutagens, carcinogens and teratogens agents. In general, chemicals that interact directly with DNA by biding covalently or by intercalating, or indirectly by interfering with DNA synthesis, were among the first chemotherapeutics developed. Also, these drugs can induce reactive oxygen species that can lead to DNA damage and, consequently, mutations. These drugs are often used in combination to achieve synergistic effects on tumour cells resulting from their differing modes of action. However, most if not all of these chemical agents are generally nonselective and, along with tumour cells, normal cells may undergo cytotoxic/genotoxic damage. The in vivo exposure to antineoplastic drugs has been shown to induce different types of lesions in DNA, depending on the particular stage of cell cycle at the time of treatment. Besides the patients that use these drugs as a treatment, workers that handle and/or administer these drugs can be exposed to these substances; namely pharmacy, and nursing personnel in hospital context.