969 resultados para Ordinary and partial differential equations
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
"Supported in part by the Department of Energy under contract ENERGY/EY-76-S-02-2383, and submitted in partial fulfillment of the requirements of the Graduate College for the degree of doctor of philosophy."
Resumo:
"Presented at the Differential Equation Workshop, Center for Interdisciplinary Research (Zif), University of Bielefeld, West Germany, April 21, 1980."
Resumo:
"Supported in part by contract US AEC AT(11-1)2383."
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.
Resumo:
In this paper we extend the guiding function approach to show that there are periodic or bounded solutions for first order systems of ordinary differential equations of the form x1 =f(t,x), a.e. epsilon[a,b], where f satisfies the Caratheodory conditions. Our results generalize recent ones of Mawhin and Ward.
Resumo:
The paper establishes the existence and uniqueness of asymptotically almost automorphic mild solution to an abstract partial neutral integro-differential equation with unbounded delay. An example is given to illustrate our results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd
Resumo:
In this paper we study the existence of mild solutions for a class of first order abstract partial neutral differential equations with state-dependent delay. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.