910 resultados para Oral Delta(9)-tetrahydrocannabinol
Resumo:
The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H(2)O(2), endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H(2)O(2), as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5-10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo.
Resumo:
The concentration of 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH) in whole blood is used as a parameter for assessing the consumption behavior of cannabis consumers. The blood level of THCCOOH-glucuronide might provide additional information about the frequency of cannabis use. To verify this assumption, a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the rapid and direct quantification of free and glucuronidated THCCOOH in human whole blood was newly developed. The method comprised protein precipitation, followed by injection of the processed sample onto a trapping column and subsequent gradient elution to an analytical column for separation and detection. The total LC run time was 4.5 min. Detection of the analytes was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was fully validated by evaluating the following parameters: linearity, lower limit of quantification, accuracy and imprecision, selectivity, extraction efficiency, matrix effect, carry-over, dilution integrity, analyte stability, and re-injection reproducibility. All acceptance criteria were analyzed and the predefined criteria met. Linearity ranged from 5.0 to 500 μg/L for both analytes. The method was successfully applied to whole blood samples from a large collective of cannabis consumers, demonstrating its applicability in the forensic field.
Resumo:
Addition of a saturated fatty acid (SFA) induced a strong increase in heat shock (HS) mRNA transcription when cells were heat-shocked at 37 degrees C, whereas treatment with an unsaturated fatty acid (UFA) reduced or eliminated the level of HS gene transcription at 37 degrees C. Transcription of the delta 9-desaturase gene (Ole1) of Histoplasma capsulatum, whose gene product is responsible for the synthesis of UFA, is up-regulated in a temperature-sensitive strain. We show that when the L8-14C mutant of Saccharomyces cerevisiae, which has a disrupted Ole1 gene, is complemented with its own Ole1 coding region under control of its own promoter or Ole1 promoters of H. capsulatum, the level of HS gene transcription depends on the activity of the promoters. Fluorescence anisotropy of mitochondrial membranes of completed strains corresponded to the different activity of the Ole1 promoter used. We propose that the SFA/UFA ratio and perturbation of membrane lipoprotein complexes are involved in the perception of rapid temperature changes and under HS conditions disturbance of the preexisting membrane physical state causes transduction of a signal that induces transcription of HS genes.
Resumo:
Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.
Resumo:
Purpose: Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina.
Methods: Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs).
Results: Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone.
Conclusions: Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.
Resumo:
In Sudanese women with (n = 60) and without (n = 65) pre-eclampsia, circulating lipids, plasma and red cell saturated and monounsaturated fatty (MUFA) acids and dimethyl acetals (DMAs) were investigated. DMAs are an indirect marker of levels of plasmalogens, endogenous antioxidants, which play a critical role in oxidative protection, and cholesterol homeostasis. The pre-eclamptics had higher C18:1n-9 (p < 0.001) and ΣMUFA (p < 0.01) in plasma free fatty acids, C16:1n-7, C18:1n-9, ΣMUFA; 16:0/16:1n-7 (p < 0.01) in erythrocyte choline phosphoglycerides (ePC) and 16:1n-7, 18:1n-7 and 16:0/16:1n-7 (p < 0.01) in erythrocyte ethanolamine phosphoglycerides (ePE). In contrast, the DMAs 18:0, 18:1 and ΣDMAs in ePE, and 16:0, 18:0 and ΣDMAs in ePC were reduced (p < 0.001) in the pre-eclamptic women. This study of pregnant women with high carbohydrate and low fat background diet suggests pre-eclampsia is associated with oxidative stress and enhanced activity of the microsomal enzyme stearyl-CoA desaturase (delta 9 desaturase), as assessed by palmitic/palmitoleic (C16:0/C16:n-1) and stearic/oleic (C18/C18:1n-9) ratios.
Resumo:
[Tesis] ( Maestría en Enseñanza Superior) U.A.N.L.
Resumo:
This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The calciuric response after an oral calcium load (1000 mg elemental calcium together with a standard breakfast) was studied in 13 healthy male controls and 21 recurrent idiopathic renal calcium stone formers, 12 with hypercalciuria (UCa x V > 7.50 mmol/24 h) and nine with normocalciuria. In controls, serum 1,25(OH)2 vitamin D3 (calcitriol) remained unchanged 6 h after oral calcium load (50.6 +/- 5.1 versus 50.9 +/- 5.0 pg/ml), whereas it tended to increase in hypercalciuric (from 53.6 +/- 3.2 to 60.6 +/- 5.4 pg/ml, P = 0.182) and fell in normocalciuric stone formers (from 45.9 +/- 2.6 to 38.1 +/- 3.3 pg/ml, P = 0.011). The total amount of urinary calcium excreted after OCL was 2.50 +/- 0.20 mmol in controls, 2.27 +/- 0.27 mmol in normocalciuric and 3.62 +/- 0.32 mmol in hypercalciuric stone formers (P = 0.005 versus controls and normocalciuric stone formers respectively); it positively correlated with serum calcitriol 6 h after calcium load (r = 0.392, P = 0.024). Maximum increase in urinary calcium excretion rate, delta Ca-Emax, was inversely related to intact PTH levels in the first 4 h after calcium load, i.e. more pronounced PTH suppression predicted a steeper increase in urinary calcium excretion rate. Twenty-four-hour urine calcium excretion rate was inversely related to the ratio of delta calcitriol/deltaPTHmax after calcium load (r = -0.653, P = 0.0001), indicating that an abnormally up-regulated synthesis of calcitriol and consecutive relative PTH suppression induce hypercalciuria.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Previous studies have suggested that oral or intravenous glucose enhances salt and water retention following a saline load. To test this, we studied the effects of an oral glucose load on urinary sodium and water excretion and serum biochemistry in response to a 2l intravenous infusion of 0.9% saline in normal subjects.