877 resultados para Operational amplifiers
Resumo:
This thesis is an ecological systems case study of an industry-school partnership. It examines a minerals and energy sector partnership with Queensland schools and explains the operational dynamics. In doing so, an original contribution to theory and practice was presented, together with implications for the impact of industry on education.
Resumo:
Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.
Resumo:
In Australia, the development of rangelands has led to steady gains in pastoral productivity through more intensive and widespread land use (Stokes et al., 2006). Opportunities to benefit from intensification exist on large properties with relatively poor water and fencing infrastructure development, resulting in uneven utilisation of available forage (Ash et al.,2006). The objective of this study is to value expected economic gains from carrying out property improvements on a beef property located in Northern Australia.
Resumo:
Negative impedance converters (NIC's) may be used to realize negative driving-point impedances. The effect of the nonideal characteristics of the operational amplifier such as finite frequencydependent gain and output impedance on the performance of the negative impedances is analyzed. Detailed equivalent circuits showing the additional positive or negative inductive impedances due to the nonideal characteristics are given for negative resistance and negative capacitance realizations, and their relative performances are compared. The experimental results confirm the validity of the equivalent circuits. The effect of the slew rate of the operational amplifier on the maximum signal-handling capability (SHC) of the negative impedances at high frequencies is studied. Practical design considerations for achieving wider bandwidth as well as improved SHC are discussed.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
This thesis investigates factors that impact the energy efficiency of a mining operation. An innovative mathematical framework and solution approach are developed to model, solve and analyse an open-pit coal mine. A case study in South East Queensland is investigated to validate the approach and explore the opportunities for using it to aid long, medium and short term decision makers.
Resumo:
Yhteenveto: Lumimallit vesistöjen ennustemalleissa
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Memory models of shared memory concurrent programs define the values a read of a shared memory location is allowed to see. Such memory models are typically weaker than the intuitive sequential consistency semantics to allow efficient execution. In this paper, we present WOMM (abbreviation for Weak Operational Memory Model) that formally unifies two sources of weak behavior in hardware memory models: reordering of instructions and weakly consistent memory. We show that a large number of optimizations are allowed by WOMM. We also show that WOMM is weaker than a number of hardware memory models. Consequently, if a program behaves correctly under WOMM, it will be correct with respect to those hardware memory models. Hence, WOMM can be used as a formally specified abstraction of the hardware memory models. Moreover; unlike most weak memory models, WOMM is described using operational semantics, making it easy to integrate into a model checker for concurrent programs. We further show that WOMM has an important property - it has sequential consistency semantics for datarace-free programs.
Resumo:
The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mobile WiMAX is a burgeoning network technology with diverse applications, one of them being used for VANETs. The performance metrics such as Mean Throughput and Packet Loss Ratio for the operations of VANETs adopting 802.16e are computed through simulation techniques. Next we evaluated the similar performance of VANETs employing 802.11p, also known as WAVE (Wireless Access in Vehicular Environment). The simulation model proposed is close to reality as we have generated mobility traces for both the cases using a traffic simulator (SUMO), and fed it into network simulator (NS2) based on their operations in a typical urban scenario for VANETs. In sequel, a VANET application called `Street Congestion Alert' is developed to assess the performances of these two technologies. For this application, TraCI is used for coupling SUMO and NS2 in a feedback loop to set up a realistic simulation scenario. Our inferences show that the Mobile WiMAX performs better than WAVE for larger network sizes.
Resumo:
Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.