831 resultados para Open Research Data
Resumo:
Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.
Resumo:
Mode of access: Internet.
Resumo:
"November 1966."
Resumo:
Abstract not available
Resumo:
Presentation from the MARAC conference in Pittsburgh, PA on April 14–16, 2016. S13 - Student Poster Session; Analysis of Federal Policy on Public Access to Scientific Research Data
Resumo:
Responsible Research Data Management (RDM) is a pillar of quality research. In practice good RDM requires the support of a well-functioning Research Data Infrastructure (RDI). One of the challenges the research community is facing is how to fund the management of research data and the required infrastructure. Knowledge Exchange and Science Europe have both defined activities to explore how RDM/RDI are, or can be, funded. Independently they each planned to survey users and providers of data services and on becoming aware of the similar objectives and approaches, the Science Europe Working Group on Research Data and the Knowledge Exchange Research Data expert group joined forces and devised a joint activity to to inform the discussion on the funding of RDM/RDI in Europe.
Resumo:
As support grows for greater access to information and data held by governments, so does awareness of the need for appropriate policy, technical and legal frameworks to achieve the desired economic and societal outcomes. Since the late 2000s numerous international organizations, inter-governmental bodies and governments have issued open government data policies, which set out key principles underpinning access to, and the release and reuse of data. These policies reiterate the value of government data and establish the default position that it should be openly accessible to the public under transparent and non-discriminatory conditions, which are conducive to innovative reuse of the data. A key principle stated in open government data policies is that legal rights in government information must be exercised in a manner that is consistent with and supports the open accessibility and reusability of the data. In particular, where government information and data is protected by copyright, access should be provided under licensing terms which clearly permit its reuse and dissemination. This principle has been further developed in the policies issued by Australian Governments into a specific requirement that Government agencies are to apply the Creative Commons Attribution licence (CC BY) as the default licensing position when releasing government information and data. A wide-ranging survey of the practices of Australian Government agencies in managing their information and data, commissioned by the Office of the Australian Information Commissioner in 2012, provides valuable insights into progress towards the achievement of open government policy objectives and the adoption of open licensing practices. The survey results indicate that Australian Government agencies are embracing open access and a proactive disclosure culture and that open licensing under Creative Commons licences is increasingly prevalent. However, the finding that ‘[t]he default position of open access licensing is not clearly or robustly stated, nor properly reflected in the practice of Government agencies’ points to the need to further develop the policy framework and the principles governing information access and reuse, and to provide practical guidance tools on open licensing if the broadest range of government information and data is to be made available for innovative reuse.
Resumo:
On 19 June 2015, representatives from over 40 Australian research institutions gathered in Canberra to launch their Open Data Collections. The one day event, hosted by the Australian National Data Service (ANDS), showcased to government and a range of national stakeholders the rich variety of data collections that have been generated through the Major Open Data Collections (MODC) project. Colin Eustace attended the showcase for QUT Library and presented a poster that reflected the work that he and Jodie Vaughan generated through the project. QUT’s Blueprint 4, the University’s five-year institutional strategic plan, outlines the key priorities of developing a commitment to working in partnership with industry, as well as combining disciplinary strengths with interdisciplinary application. The Division of Technology, Information and Learning Support (TILS) has undertaken a number of Australian National Data Service (ANDS) funded projects since 2009 with the aim of developing improved research data management services within the University to support these strategic aims. By leveraging existing tools and systems developed during these projects, the Major Open Data Collection (MODC) project delivered support to multi-disciplinary collaborative research activities through partnership building between QUT researchers and Queensland government agencies, in order to add to and promote the discovery and reuse of a collection of spatially referenced datasets. The MODC project built upon existing Research Data Finder infrastructure (which uses VIVO open source software, developed by Cornell University) to develop a separate collection, Spatial Data Finder (https://researchdatafinder.qut.edu.au/spatial) as the interface to display the spatial data collection. During the course of the project, 62 dataset descriptions were added to Spatial Data Finder, 7 added to Research Data Finder and two added to Software Finder, another separate collection. The project team met with 116 individual researchers and attended 13 school and faculty meetings to promote the MODC project and raise awareness of the Library’s services and resources for research data management.
Resumo:
This briefing paper offers insight into various open access business models, from institutional to subject repositories, from open access journals to research data and monographs. This overview shows that there is a considerable variety in business models within a common framework of public funding. Open access through institutional repositories requires funding from particular institutions to set up and maintain a repository, while subject repositories often require contributions from a number of institutions or funding agencies to maintain a subject repository hosted at one institution. Open access through publication in open access journals generally requires a mix of funding sources to meet the cost of publishing. Public or charitable research funding bodies may contribute part of the cost of publishing in an open access journal but institutions also meet part of the cost, particularly when the author does not have a research grant from a research funding body
Resumo:
Traditionally, the formal scientific output in most fields of natural science has been limited to peer- reviewed academic journal publications, with less attention paid to the chain of intermediate data results and their associated metadata, including provenance. In effect, this has constrained the representation and verification of the data provenance to the confines of the related publications. Detailed knowledge of a dataset’s provenance is essential to establish the pedigree of the data for its effective re-use, and to avoid redundant re-enactment of the experiment or computation involved. It is increasingly important for open-access data to determine their authenticity and quality, especially considering the growing volumes of datasets appearing in the public domain. To address these issues, we present an approach that combines the Digital Object Identifier (DOI) – a widely adopted citation technique – with existing, widely adopted climate science data standards to formally publish detailed provenance of a climate research dataset as an associated scientific workflow. This is integrated with linked-data compliant data re-use standards (e.g. OAI-ORE) to enable a seamless link between a publication and the complete trail of lineage of the corresponding dataset, including the dataset itself.
Resumo:
Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
The development of research data management infrastructure and services and making research data more discoverable and accessible to the research community is a key priority at the national, state and individual university level. This paper will discuss and reflect upon a collaborative project between Griffith University and the Queensland University of Technology to commission a Metadata Hub or Metadata Aggregation service based upon open source software components. It will describe the role that metadata aggregation services play in modern research infrastructure and argue that this role is a critical one.
Resumo:
INTRODUCTION: Queensland University of Technology (QUT) Library is partnering with High Performance Computing (HPC) services and the Division of Research and Commercialisation to develop and deliver a range of integrated research support services and systems designed to enhance the research capabilities of the University. Existing and developing research support services include - support for publishing strategies including open access, bibliographic citation and ranking services, research data management, use of online collaboration tools, online survey tools, quantitative and qualitative data analysis, content management and storage solutions. In order to deliver timely and effective research referral and support services, it is imperative that library staff maintain their awareness of, and develop expertise in new eResearch methods and technologies. ---------- METHODS: In 2009/10 QUT Library initiated an online survey for support staff and researchers and a series of focus groups for researchers aimed at gaining a better understanding of current and future eresearch practices and skills. These would better inform the development of a research skills training program and the development of new research support services. The Library and HPC also implemented a program of seminars and workshops designed to introduce key library staff to a broad range of eresearch concepts and technologies. Feedback was obtained after each training session. A number of new services were implemented throughout 2009 and 2010. ---------- RESULTS: Key findings of the survey and focus groups are related to the development of the staff development program. Feedback from program attendees is provided and evaluated. The staff development program is assessed in terms of its success to support the implementation of new research support services. --------- CONCLUSIONS QUT Library has embarked on an ambitious awareness and skills development program to assist Library staff transition a period of rapid change and broadening scope for the Library. Successes and challenges of the program are discussed. A number of recommendations are made in retrospect and also looking forward to the future training needs of Library staff to support the University’s future research goals.