874 resultados para Objective function values
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
This paper reports the initial steps of research on planning of rural networks for MV and LV. In this paper, two different cases are studied. In the first case, 100 loads are distributed uniformly on a 100 km transmission line in a distribution network and in the second case, the load structure become closer to the rural situation. In case 2, 21 loads are located in a distribution system so that their distance is increasing, distance between load 1 and 2 is 3 km, between 2 and 3 is 6 km, etc). These two models to some extent represent the distribution system in urban and rural areas, respectively. The objective function for the design of the optimal system consists of three main parts: cost of transformers, and MV and LV conductors. The bus voltage is expressed as a constraint and should be maintained within a standard level, rising or falling by no more than 5%.
Resumo:
In this paper, the placement of sectionalizers, as well as, a cross-connection is optimally determined so that the objective function is minimized. The objective function employed in this paper consists of two main parts, the switch cost and the reliability cost. The switch cost is composed of the cost of sectionalizers and cross-connection and the reliability cost is assumed to be proportional to a reliability index, SAIDI. To optimize the allocation of sectionalizers and cross-connection problem realistically, the cost related to each element is considered as discrete. In consequence of binary variables for the availability of sectionalizers, the problem is extremely discrete. Therefore, the probability of local minimum risk is high and a heuristic-based optimization method is needed. A Discrete Particle Swarm Optimization (DPSO) is employed in this paper to deal with this discrete problem. Finally, a testing distribution system is used to validate the proposed method.
Resumo:
This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.
Resumo:
This paper introduces a novel technique to directly optimise the Figure of Merit (FOM) for phonetic spoken term detection. The FOM is a popular measure of sTD accuracy, making it an ideal candiate for use as an objective function. A simple linear model is introduced to transform the phone log-posterior probabilities output by a phe classifier to produce enhanced log-posterior features that are more suitable for the STD task. Direct optimisation of the FOM is then performed by training the parameters of this model using a non-linear gradient descent algorithm. Substantial FOM improvements of 11% relative are achieved on held-out evaluation data, demonstrating the generalisability of the approach.
Resumo:
In this paper, both Distributed Generators (DG) and capacitors are allocated and sized optimally for improving line loss and reliability. The objective function is composed of the investment cost of DGs and capacitors along with loss and reliability which are converted to the genuine dollar. The bus voltage and line current are considered as constraints which should be satisfied during the optimization procedure. Hybrid Particle Swarm Optimization as a heuristic based technique is used as the optimization method. The IEEE 69-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate that the lowest cost planning is found by optimizing both DGs and capacitors in distribution networks.
Resumo:
Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.
Resumo:
An iterative based strategy is proposed for finding the optimal rating and location of fixed and switched capacitors in distribution networks. The substation Load Tap Changer tap is also set during this procedure. A Modified Discrete Particle Swarm Optimization is employed in the proposed strategy. The objective function is composed of the distribution line loss cost and the capacitors investment cost. The line loss is calculated using estimation of the load duration curve to multiple levels. The constraints are the bus voltage and the feeder current which should be maintained within their standard range. For validation of the proposed method, two case studies are tested. The first case study is the semi-urban 37-bus distribution system which is connected at bus 2 of the Roy Billinton Test System which is located in the secondary side of a 33/11 kV distribution substation. The second case is a 33 kV distribution network based on the modification of the 18-bus IEEE distribution system. The results are compared with prior publications to illustrate the accuracy of the proposed strategy.
Resumo:
With the progressive exhaustion of fossil energy and the enhanced awareness of environmental protection, more attention is being paid to electric vehicles (EVs). Inappropriate siting and sizing of EV charging stations could have negative effects on the development of EVs, the layout of the city traffic network, and the convenience of EVs' drivers, and lead to an increase in network losses and a degradation in voltage profiles at some nodes. Given this background, the optimal sites of EV charging stations are first identified by a two-step screening method with environmental factors and service radius of EV charging stations considered. Then, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EV charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA). Finally, simulation results of the IEEE 123-node test feeder have demonstrated that the developed model and method cannot only attain the reasonable planning scheme of EV charging stations, but also reduce the network loss and improve the voltage profile.
Resumo:
In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.