971 resultados para ORDER-STATISTICS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated infants' sensitivity to spatiotemporal structure. In Experiment 1, circles appeared in a statistically defined spatial pattern. At test 11-month-olds, but not 8-month-olds, looked longer at a novel spatial sequence. Experiment 2 presented different color/shape stimuli, but only the location sequence was violated during test; 8-month-olds preferred the novel spatial structure, but 5-month-olds did not. In Experiment 3, the locations but not color/shape pairings were constant at test; 5-month-olds showed a novelty preference. Experiment 4 examined "online learning": We recorded eye movements of 8-month-olds watching a spatiotemporal sequence. Saccade latencies to predictable locations decreased. We argue that temporal order statistics involving informative spatial relations become available to infants during the first year after birth, assisted by multiple cues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider a cooperative communication system where some a priori information of wireless channels is available at the transmitter. Several opportunistic relaying strategies are developed to fully utilize the available channel information. Then an explicit expression of the outage probability is developed for each proposed cooperative scheme as well as the diversity-multiplexing tradeoff by using order statistics. Our analytical results show that the more channel information available at the transmitter, the better performance a cooperative system can achieve. When the exact values of the source-relay channels are available, the performance loss at low SNR can be effectively suppressed. When the source node has the access to the source-relay and relay-destination channels, the full diversity can be achieved by costing only one extra channel used for relaying transmission, and an optimal diversity-multiplexing tradeoff can be achieved d(r) = (N + 1)(1 - 2r), where N is the number of all possible relaying nodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ever increasing demand for high image quality requires fast and efficient methods for noise reduction. The best-known order-statistics filter is the median filter. A method is presented to calculate the median on a set of N W-bit integers in W/B time steps. Blocks containing B-bit slices are used to find B-bits of the median; using a novel quantum-like representation allowing the median to be computed in an accelerated manner compared to the best-known method (W time steps). The general method allows a variety of designs to be synthesised systematically. A further novel architecture to calculate the median for a moving set of N integers is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A precipitation downscaling method is presented using precipitation from a general circulation model (GCM) as predictor. The method extends a previous method from monthly to daily temporal resolution. The simplest form of the method corrects for biases in wet-day frequency and intensity. A more sophisticated variant also takes account of flow-dependent biases in the GCM. The method is flexible and simple to implement. It is proposed here as a correction of GCM output for applications where sophisticated methods are not available, or as a benchmark for the evaluation of other downscaling methods. Applied to output from reanalyses (ECMWF, NCEP) in the region of the European Alps, the method is capable of reducing large biases in the precipitation frequency distribution, even for high quantiles. The two variants exhibit similar performances, but the ideal choice of method can depend on the GCM/reanalysis and it is recommended to test the methods in each case. Limitations of the method are found in small areas with unresolved topographic detail that influence higher-order statistics (e.g. high quantiles). When used as benchmark for three regional climate models (RCMs), the corrected reanalysis and the RCMs perform similarly in many regions, but the added value of the latter is evident for high quantiles in some small regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many statistical inference problems, there is interest in estimation of only some elements of the parameter vector that defines the adopted model. In general, such elements are associated to measures of location and the additional terms, known as nuisance parameters, to control the dispersion and asymmetry of the underlying distributions. To estimate all the parameters of the model and to draw inferences only on the parameters of interest. Depending on the adopted model, this procedure can be both algebraically is common and computationally very costly and thus it is convenient to reduce it, so that it depends only on the parameters of interest. This article reviews estimation methods in the presence of nuisance parameters and consider some applications in models recently discussed in the literature.