945 resultados para Nutrients and toxic elements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study is to identify cues for the cognitive process of attention in ancient Greek art, aiming to find confirmation of its possible use by ancient Greek audiences and artists. Evidence of cues that trigger attention’s psychological dispositions was searched through content analysis of image reproductions of ancient Greek sculpture and fine vase painting from the archaic to the Hellenistic period - ca. 7th -1st cent. BC. Through this analysis, it was possible to observe the presence of cues that trigger orientation to the work of art (i.e. amplification, contrast, emotional salience, simplification, symmetry), of a cue that triggers a disseminate attention to the parts of the work (i.e. distribution of elements) and of cues that activate selective attention to specific elements in the work of art (i.e. contrast of elements, salient color, central positioning of elements, composition regarding the flow of elements and significant objects). Results support the universality of those dispositions, probably connected with basic competencies that are hard-wired in the nervous system and in the cognitive processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycorrhizal associations, including ericoid, arbuscular and ecto-mycorrhizas, are found colonising highly metal contaminated soils. How do mycorrhizal fungi achieve metal resistance, and does this metal resistance confer enhanced metal resistance to plant symbionts? These are the questions explored in this review by considering the mechanistic basis of mycorrhizal adaptation to metal cations. Recent molecular and physiological studies are discussed. The review reappraises what constitutes metal resistance in the context of mycorrhizal associations and sets out the constitutive and adaptive mechanisms available for mycorrhizas to adapt to contaminated sites. The only direct evidence of mycorrhizal adaptation to metal cation pollutants is the exudation of organic acids to alter pollutant availability in the rhizosphere. This is not to say that other mechanism of adaptation do not exist, but conclusive evidence of adaptive mechanisms of tolerance are lacking. For constitutive mechanisms of resistance, there is much more evidence, and mycorrhizas possess the same constitutive mechanisms for dealing with metal contaminants as other organisms. Rhizosphere chemistry is critical to understanding the interactions of mycorrhizas with polluted soils. Soil pH, mineral weathering, pollutant precipitation with plant excreted organic acids all may have a key role in constitutive and adaptive tolerance of mycorrhizal associations present on contaminated sites. The responses of mycorrhizal fungi to toxic metal cations are diverse. This, linked to the fact that mycorrhizal diversity is normally high, even on highly contaminated sites, suggests that this diversity may have a significant role in colonisation of contaminated sites by mycorrhizas. That is, the environment selects for the fungal community that can best cope with the environment, so having diverse physiological attributes will enable colonisation of a wide range of metal contaminated micro-habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rice is comparatively efficient at assimilating inorganic arsenic (As i), a class-one, non-threshold carcinogen, into its grain, being the dominant source of this element to mankind. Here it was investigated how the total arsenic (Ast) and Asi content of Italian rice grain sourced from market outlets varied by geographical origin and type. Total Cr, Cd Se, Mg, K, Zn, Ni were also quantified. Ast concentration on a variety basis ranged from means of 0.18 mg kg-1 to 0.28 mg kg -1, and from 0.11 mg kg-1 to 0.28 mg kg-1 by production region. For Asi concentration, means ranged from 0.08 mg kg-1 to 0.11 mg kg-1 by variety and 0.10 mg kg -1 to 0.06 mg kg-1 by region. There was significant geographical variation for both Ast and Asi; total Se and Ni concentration; while the total concentration of Zn, Cr, Ni and K were strongly influenced by the type of rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≅0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.