999 resultados para Nuclear Fuel
Resumo:
Work performed at the Sylvania-Corning Nuclear Corporation under contract AT-30-1 GEN-366 with the Division of Reactor Development.
Resumo:
"As currently interpreted, it is difficult to see why the Nuclear Nonproliferation Treaty (NPT) warrants much support as a nonproliferation convention. Most foreign ministries, including that of Iran and the United States, insist that Article IV of the NPT recognizes all states' "inalienable right" of all states to develop "peaceful nuclear energy". This includes money-losing activities, such as nuclear fuel reprocessing, which can bring countries to the very brink of acquiring nuclear weapons. If the NPT is intended to ensure that states share peaceful "benefits" of nuclear energy and to prevent the spread of nuclear bomb making technologies, it is difficult to see how it can accomplish either if the interpretation identified above is correct."--P. 3
Resumo:
"DOE/EIA-0438."
A new age of fuel performance code criteria studied through advanced atomistic simulation techniques
Resumo:
A fundamental step in understanding the effects of irradiation on metallic uranium and uranium dioxide ceramic fuels, or any material, must start with the nature of radiation damage on the atomic level. The atomic damage displacement results in a multitude of defects that influence the fuel performance. Nuclear reactions are coupled, in that changing one variable will alter others through feedback. In the field of fuel performance modeling, these difficulties are addressed through the use of empirical models rather than models based on first principles. Empirical models can be used as a predictive code through the careful manipulation of input variables for the limited circumstances that are closely tied to the data used to create the model. While empirical models are efficient and give acceptable results, these results are only applicable within the range of the existing data. This narrow window prevents modeling changes in operating conditions that would invalidate the model as the new operating conditions would not be within the calibration data set. This work is part of a larger effort to correct for this modeling deficiency. Uranium dioxide and metallic uranium fuels are analyzed through a kinetic Monte Carlo code (kMC) as part of an overall effort to generate a stochastic and predictive fuel code. The kMC investigations include sensitivity analysis of point defect concentrations, thermal gradients implemented through a temperature variation mesh-grid, and migration energy values. In this work, fission damage is primarily represented through defects on the oxygen anion sublattice. Results were also compared between the various models. Past studies of kMC point defect migration have not adequately addressed non-standard migration events such as clustering and dissociation of vacancies. As such, the General Utility Lattice Program (GULP) code was utilized to generate new migration energies so that additional non-migration events could be included into kMC code in the future for more comprehensive studies. Defect energies were calculated to generate barrier heights for single vacancy migration, clustering and dissociation of two vacancies, and vacancy migration while under the influence of both an additional oxygen and uranium vacancy.
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
Tässä työssä ontarkasteltu käytetyn ydinpolttoaineen kapselointilaitoksessa muodostuvia radioaktiivisia jätteitä. Kapselointilaitos rakennetaan Olkiluotoon joko Olkiluodon ydinvoimalaitoksen käytetyn ydinpolttoaineen välivaraston yhteyteen tai loppusijoituslaitokseen kytkettynä laitoksena. Työssä on otettu huomioon molemmat vaihtoehdot ja niiden eroavaisuudet prosessien ja jätemäärien osilta. Kaikki jäte, joka muodostuu kapselointilaitoksen valvonta-alueella, luokitellaan radioaktiiviseksi jätteeksi. Radioaktiivisia jätteitä muodostuu, kun käytetystä ydinpolttoaineesta irronneet radioaktiiviset aineet kontaminoivat laitoksen rakenteita ja laitteita. Muodostuvat radioaktiiviset jätteet kiinteytetään ja sijoitetaan loppusijoitustilan yhteyteen rakennettavaan käyttö- ja käytöstäpoisto-jäteluolaan. Hyvin vähäaktiivinen jäte voidaan vapauttaa valvonnasta aktiivisuusmittauksen jälkeen. Radioaktiivisia jätteitä muodostuu kapselointilaitoksen toiminnan aikana vähäisiä määriä verrattuna ydinvoimalaitoksiin. Vertailtaessa molempien kapselointilaitosvaihtoehtojen radioaktiivisten jätteiden määriä, ainoastaan loppusijoitettavan nestemäisten jätteiden määrässä on eroa.
Resumo:
Työssä vertaillaan eri sähköntuotantovaihtoehtojen taloudellista kannattavuutta. Kannattavuusvertailu suoritetaan pelkkää sähköä tuottaville voimalaitoksille. Sähkön ja lämmön yhteistuotannon lisärakentaminen tulee kattamaan tietyn osuuden lähitulevaisuuden sähkön hankinnan vajeesta, mutta sen lisäksi tarvitaan myös uutta lauhdetuotantokapasiteettia. Tutkittavat voimalaitostyypit ovat: ydinvoimalaitos, maakaasukombilauhdevoimalaitos, kivihiililauhdevoimalaitos, turvelauhdevoimalaitos, puulauhdevoimalaitos ja tuulivoimala. Kannattavuustarkastelu suoritetaan annuiteettimenetelmällä käyttäen 5 % reaalikorkoa ja tammikuun 2008 hintatasoa. Laskelmien perusteella 8000 tunnin huipunkäyttöajalla ydinsähkön tuotantokustannus olisi 35,0 € /MWh, kaasusähkön 59,2 €/MWh ja hiilisähkön 64,4 €/MWh, kun hiilidioksidipäästöoikeuden hintana käytetään 23 €/t. Ilman päästökauppaa kaasusähkön hinta on 51,2 €/MWh ja hiilisähkön 45,7 €/MWh ydinsähkön hinnan pysyessä ennallaan. Herkkyystarkastelun tulosten perusteella ydinvoiman kilpailukyky korostuu muihin tarkasteltuihin tuotantomuotoihin verrattuna. Ydinpolttoaineen suurellakaan hinnan muutoksella ei ole merkittävää vaikutusta ydinsähkön tuotantokustannukseen, kun taas maakaasusähkö on erittäin riippuvainen polttoaineen hinnasta. Myös päästöoikeuden hinnan kasvu lisää merkittävästi ydinvoiman kilpailukykyä kaasu- ja hiilisähköön verrattuna. Ydinvoimainvestoinnin kannattavuutta ja takaisinmaksua tarkastellaan myös yksinään siten, että investoinnilla saavutettavien tuottojen laskennassa käytetään useita eri sähkön markkinahintoja. Investoinnin kannattavuus on erittäin hyvä, kun sähkön markkinahinta on 50 €/MWh tai suurempi.
Resumo:
The economical competitiveness of various power plant alternatives is compared. The comparison comprises merely electricity producing power plants. Combined heat and power (CHP) producing power will cover part of the future power deficit in Finland, but also condensing power plants for base load production will be needed. The following types of power plants are studied: nuclear power plant, combined cycle gas turbine plant, coal-fired condensing power plant, peat-fired condensing power plant, wood-fired condensing power plant and wind power plant. The calculations are carried out by using the annuity method with a real interest rate of 5 % per annum and with a fixed price level as of January 2008. With the annual peak load utilization time of 8000 hours (corresponding to a load factor of 91,3 %) the production costs would be for nuclear electricity 35,0 €/MWh, for gas based electricity 59,2 €/MWh and for coal based electricity 64,4 €/MWh, when using a price of 23 €/tonCO2 for the carbon dioxide emission trading. Without emission trading the production cost of gas electricity is 51,2 €/MWh and that of coal electricity 45,7 €/MWh and nuclear remains the same (35,0 €/MWh) In order to study the impact of changes in the input data, a sensitivity analysis has been carried out. It reveals that the advantage of the nuclear power is quite clear. E.g. the nuclear electricity is rather insensitive to the changes of nuclear fuel price, whereas for natural gas alternative the rising trend of gas price causes the greatest risk. Furthermore, increase of emission trading price improves the competitiveness of the nuclear alternative. The competitiveness and payback of the nuclear power investment is studied also as such by using various electricity market prices for determining the revenues generated by the investment. The profitability of the investment is excellent, if the market price of electricity is 50 €/MWh or more.
Resumo:
Kaikkein yleisin käytössä oleva ydinpolttoainekierto on nykyisin avoin, jossa käytetty ydinpolttoaine loppusijoitetaan suoraan ilman jälleenkäsittelyä. Nykyisin kehitteillä olevat uuden sukupolven ydinreaktorit ovat kuitenkin pääosin suunniteltu osittain tai kokonaan suljetuille ydinpolttoainekierroille, jossa käytetty polttoaine jälleenkäsitellään ja osa materiaaleista kierrätetään. Tämän työn tavoitteena oli arvioida näitä kehittyneitä ydinpolttoainekiertoja ympäristövaikutusten ja taloudellisuuden suhteen. Työn yleisluonteista vertailua varten valittiin neljä erilaista kehittynyttä polttoainekiertoskenaariota, joita verrattiin avoimeen polttoainekiertoon erilaisten parametrien avulla. Parametreinä käytettiin muun muassa uraanin kulutusta, loppusijoitettavan jätteen määrää, aktiivisuutta ja lämmöntuottoa sekä käytönaikaisten radioaktiivisten päästöjen määrää. Yleislounteisen arvioinnin lisäksi työssä tarkasteltiin polttoainekiertoa myös Suomen näkökulmasta. Nykyistä polttoainekiertoa verrattiin kahteen erilaiseen tulevaisuuden versioon. Kestävän kehityksen osalta kehittyneet polttoainekierrot vähensivät ympäristövaikutusten määrää avoimeen polttoainekiertoon verrattuna. Kehittyneiden polttoainekiertojen kustannukset olivat avoimen polttoainekierron kustannuksia suuremmat. Kokonaiskustannuksissa ero oli kaikilla vertailuskenaarioilla alle 20 %, mutta polttoainekiertokustannuksissa kustannusten kasvu oli välillä 27-45 % riippuen skenaariosta. Suomen tapauksessa tulokset olivat hyvin samankaltaisia. Uraanin kulutus ja loppusijoitettavan jätteen määrä väheni kehittyneempien polttoainekiertojen johdosta. Polttoainekiertokustannukset nousivat noin puolitoistakertaisiksi, mutta vaikutus kokonaiskustannuksiin oli vain noin 10 %. Johtopäätöksenä voidaan todeta, ettäydinpolttoainekierron ympäristövaikutuksia on mahdollista vähentää osittain tai kokonaan suljettujen polttoainekiertojen avulla. Vaikka polttoainekierron kustannukset kasvavat, niiden vaikutus ydinsähkön kokonaiskustannuksiin ei ole niin merkittävä.
Resumo:
Suomessa on nykyisin käytössä avoimen ydinpolttoainekierron politiikka missä käytetty polttoaine loppusijoitetaan suoraan ilman jälleenkäsittelyä. Nykyisin kehitteillä olevat uuden sukupolven ydinreaktorit ovat kuitenkin pääosin suunniteltu osittain tai kokonaan suljetuille polttoainekierroille, joissa käytetty polttoaine jälleenkäsitellään ja osa materiaaleista kierrätetään. Tässä tutkimusraportissa on tarkoitus arvioida Suomen ydinvoimakapasiteetin ja ydinpolttoainekierron kehitystä tulevina vuosikymmeninä sekä arvioida käytetyn polttoaineen jälleenkäsittelyn, kierrätyksen ja nopeiden reaktoreiden käyttöönoton vaikutusta muun muassa uraanin kulutukseen, syntyvän käytetyn polttoaineen määrään sekä polttoainekierron taloudellisuuteen. Lisäksi työssä arvioidaan Talvivaaran ja Soklin sivutuotteena saatavan uraanin riittävyyttä Suomen uraanintarpeen kattamiseksi. Työssä arvioitiin ensin oletuksien ja nykyisen tilanteen avulla Suomen ydinvoimakapasiteetin kehitys tuleville vuosille. Perustuen tähän kehitykseen nykyistä polttoainekiertoa verrattiin tämän jälkeen kahteen kehittyneempään polttoainekiertoversioon, joissa käytetty polttoaine jälleenkäsitellään, plutonium kierrätetään uudelleen polttoaineeksi ja osa termisistä reaktoreista korvataan nopeilla. Polttoainekiertoversioiden massavirtojen määrittämisessä käytettiin apuna kansainvälisen atomienergiajärjestön kehittämää Nuclear Fuel Cycle Simulation System -ohjelmaa. Nykyisellä polttoainekierrolla uraanintarve oli laskelmien perusteella noin 100 tuhatta tonnia vuoteen 2100 mennessä. Jälleenkäsittelyn ja plutoniumin kierrätyksen avulla uraanin tarve saatiin pudotettua noin 75 tuhanteen tonniin. Korvaamalla puolet ydinvoimakapasiteetista nopeilla reaktoreilla vuosina 2074 ja 2080 vähentäisi uraanintarvetta edelleen noin 66 tuhanteen tonniin. Kerääntyneen käytetyn polttoaineen määräksi arvioitiin nykyisen kaltaisella polttoainekierrolla noin 11900 tonnia vuoteen 2100 mennessä. Nopeiden reaktoreiden käyttöönoton myötä kerääntyneen käytetyn polttoaineen määrä vähenisi edelleen noin 11200 tonniin vuoteen 2100 mennessä. Talvivaaran ja Soklin uraanintuotanto riittäisi laskelmien mukaan kattamaan Suomen uraanintarpeen nykyisellä polttoainekierrolla vuoteen 2070 asti ja kehittyneemmillä polttoainekierroilla vuosiin 2089 ja 2106 asti riippuen polttoainekierrosta. Polttoainekierron kustannukset nousivat polttoaineen jälleenkäsittelyn ja kierrätyksen myötä noin 50-67 % suuremmiksi nykyiseen polttoainekiertoon verrattuna. Investointi- sekä käyttö- ja kunnossapitokustannuksien erot olivat eri versioiden välillä pienet, mistä johtuen myös kokonaiskustannuksien erot jäivät pieniksi.
Resumo:
Kandidaatintyössä perehdytään ydinpolttoaineessa tapahtuvaan lämmönsiirtoon ja lämmönsiirron ilmiöihin. Lämmönsiirron tarkastelussa keskitytään erityisesti polttoainepelletissä tapahtuvaan lämmönsiirtoon, mutta työn edetessä esitellään myös lyhyesti lämmön siirtyminen polttoainepelletistä kaasunraon ja polttoainesauvan suojakuoren läpi jäähdytteeseen. Kandidaatintyössä tarkastellaan myös kiinteiden ydinpolttoaineiden lämmönsiirto-ominaisuuksia. Lämmönsiirto-ominaisuudet riippuvat materiaalien termodynaamisista ja kemiallisista ominaisuuksista. Lämmönsiirto-ominaisuuksien tunteminen on edellytys uusien, lämmönsiirrollisesti entistä parempien, polttoaineiden kehittämiselle.
Resumo:
This thesis summarizes studies of a class of white dwarfs (WDs) called DQ WDs. White dwarfs are the remnants of ordinary stars like our Sun that have run out of nuclear fuel. WDs are classified according to the composition of their atmosphere and DQ WDs have an atmosphere made of helium and carbon. The carbon comes in either atomic or molecular form and in some cases the strong spectral absorption features cover the entire optical wavelength region. The research presented here utilizes spectropolarimetry, which is an observational technique that combines spectroscopy and polarization. Separately these allow to study the composition of a target and the inhomogeneous distribution of matter in the target. Put together they form a powerful tool to probe the physical properties in the atmosphere of a star. It is espacially good for detecting magnetic fields. The papers in this thesis describe efforts to do a survey of DQ white dwarfs with spectropolarimetry in order to search for magnetic fields in them. Paper I describes the discovery of a new magnetic cool DQ white dwarf, GJ841B. Initial modeling of molecular features on DQ WDs showed inconsistencies with observations. The first possible solution to this problem was stellar spots on these WDs. To investigate the matter, two DQ WDs were monitored for photometric variability that could arise from the presence of such spots. Paper II summarizes this short campaign and reports the negative results. Paper III reports observations of the rest of the objects in our survey. The paper includes the discovery of polarization from another cool DQ white dwarf, bringing the total of known magnetic cool DQs to three. Unfortunately the model used in this thesis cannot, in its present state, be used to model these objects nor are the observations of high enough spectroscopic resolution to do so.
Resumo:
In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies performed with various values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one.
Resumo:
Tässä työssä on tutkittu OL1/OL2-ydinvoimalaitosten käytetyn polttoaineen siirrossa aiheutuvaa altistusta neutronisäteilylle. Käytetty polttoaine siirretään vedellä täytetyssä käytetyn polttoaineen siirtosäiliössä Castor TVO:ssa OL1/OL2-laitoksilta käytetyn polttoaineen varastolle. Siirtotyön aikana useat eri ammattiryhmiin kuuluvat henkilöt työskentelevät siirtosäiliön välittömässä läheisyydessä, altistuen käytetystä polttoaineesta emittoituvalle fotoni- ja neutronisäteilylle. Aikaisemmista neutronisäteilyannosten mittauksista on todettu, ettei jatkuvalle altistuksen seurannalle ole ollut tarvetta. Tämän työn tarkoitus on selvittää teoreettisilla laskelmilla siirtotyöhön osallistuvan henkilön mahdollisuus saada kirjausrajan ylittävä annos neutronisäteilyä. Neutronisäteilyn annosnopeudet siirtosäiliötä ympäröivässä tilassa on laskettu yhdysvaltalaisella Monte Carlo-menetelmään perustuvalla MCNP-ohjelmalla. MCNP:llä mallinnettiin siirtosäiliö, siirtosäiliön sisältämä polttoaine ja ympäröivä tila kolmella jäähtymisajalla ja kolmella keskimääräisellä maksimipoistopalamalla. Polttoainenippujen isotooppikonsentraatiot ja säteilylähteiden voimakkuudet on laskettu Studsvik SNF-ohjelmalla. Simuloinnin perusteella voidaan todeta, ettei neutronisäteilyannosten jatkuvalle seurannalle ole tarvetta käytetyn polttoaineen siirrossa. Vaikka neutronisäteilyn annosnopeudet voivat nousta siirtosäiliön läheisyydessä suhteellisen suuriksi, ovat siirtosäiliön lähellä tehtävät työt niin lyhytaikaisia, että kirjausrajan ylitystä voidaan pitää hyvin epätodennäköisenä. Johtopäätökset varmistetaan työssä suunnitellulla mittausjärjestelyllä.
Resumo:
Suomen ydinenergialaki vaatii ydinenergian käytössä syntyvän ydinjätteen käsittelyn ja varastoinnin sekä loppusijoittamisen Suomeen. Fortumin ja TVO:n ydinvoimalaitoksissa syntyvä käytetty ydinpolttoaine tullaan kapseloimaan ja loppusijoittamaan Olkiluotoon rakennettavassa kapselointi- ja loppusijoituslaitoksessa. Tämän työn tavoitteena on muodostaa kokonaiskuva kapselointi- ja loppusijoituslaitoksen säteilysuojelusta aikaisemmin tehtyjen selvitysten ja suunnitelmien perusteella. Kapselointilaitoksella käytetty ydinpolttoaine suljetaan kuparikapseleihin, jotka loppusijoitetaan maan alle loppusijoituslaitoksella. Työn aluksi kuvataan loppusijoitusmenetelmä ja kapselointi- ja loppusijoituslaitoksen käyttötoiminta. Tämän jälkeen käsitellään lainsäädäntöä ja viranomaisohjeita, jotka ohjaavat ydinlaitosten säteilysuojelua. Seuraavaksi käsitellään kapselointi- ja loppusijoituslaitoksella olevia säteilylähteitä. Lisäksi työssä käsitellään kapselointi- ja loppusijoituslaitokselle suunniteltua valvonta-aluetta ja sen säteilyolosuhteiden mukaista vyöhykejakoa. Työssä saatiin tulokseksi kokonaiskuva kapselointi- ja loppusijoituslaitoksen säteilysuojelusta. Kokonaiskuvan muodostamisen lisäksi laadittiin alustavia suunnitelmia käyttötoiminnan säteilysuojelun järjestämisestä. Lisäksi laadittiin ehdotuksia valvonta-alueen tarkemmista rajoista loppusijoituslaitoksella sekä havaittiin laitosten säteilysuojeluun liittyviä ongelmia ja esitettiin ratkaisuja niihin. Ongelmaksi osoittautui muun muassa, että kapselointi- ja loppusijoituslaitoksen valvonta-alueiden luonteiden eroa ei ollut huomioitu suunnitelmissa. Lisäksi todettiin, että nykyisin ydinlaitoksilla käytössä oleva valvonta-alueen vyöhykejako ei vastaa kapselointi- ja loppusijoituslaitosten tarpeita. Näihin esitettiin ratkaisuiksi laitosten välille perustettavaa kenkärajaa ja uuden korkeamman säteilyvyöhykkeen käyttöönottoa.