962 resultados para Non-linear parameter estimation
Resumo:
The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
En este proyecto se desarrollarán algoritmos numéricos para sistemas no lineales hiperbólicos-parabólicos de ecuaciones diferenciales en derivadas parciales. Dichos sistemas tienen aplicación en propagación de ondas en ámbitos aeroespaciales y astrofísicos.Objetivos generales: 1)Desarrollo y mejora de algoritmos numéricos con la finalidad de incrementar la calidad en la simulación de propagación e interacción de ondas gasdinámicas y magnetogasdinámicas no lineales. 2)Desarrollo de códigos computacionales con la finalidad de simular flujos gasdinámicos de elevada entalpía incluyendo cambios químicos, efectos dispersivos y difusivos.3)Desarrollo de códigos computacionales con la finalidad de simular flujos magnetogasdinámicos ideales y reales.4)Aplicación de los nuevos algoritmos y códigos computacionales a la solución del flujo aerotermodinámico alrededor de cuerpos que ingresan en la atmósfera terrestre. 5)Aplicación de los nuevos algoritmos y códigos computacionales a la simulación del comportamiento dinámico no lineal de arcos magnéticos en la corona solar. 6)Desarrollo de nuevos modelos para describir el comportamiento no lineal de arcos magnéticos en la corona solar.Este proyecto presenta como objetivo principal la introducción de mejoras en algoritmos numéricos para simular la propagación e interacción de ondas no lineales en dos medios gaseosos: aquellos que no poseen carga eléctrica libre (flujos gasdinámicos) y aquellos que tienen carga eléctrica libre (flujos magnetogasdinámicos). Al mismo tiempo se desarrollarán códigos computacionales que implementen las mejoras de las técnicas numéricas.Los algoritmos numéricos se aplicarán con la finalidad de incrementar el conocimiento en tópicos de interés en la ingeniería aeroespacial como es el cálculo del flujo de calor y fuerzas aerotermodinámicas que soportan objetos que ingresan a la atmósfera terrestre y en temas de astrofísica como la propagación e interacción de ondas, tanto para la transferencia de energía como para la generación de inestabilidades en arcos magnéticos de la corona solar. Estos dos temas poseen en común las técnicas y algoritmos numéricos con los que serán tratados. Las ecuaciones gasdinámicas y magnetogasdinámicas ideales conforman sistemas hiperbólicos de ecuaciones diferenciales y pueden ser solucionados utilizando "Riemann solvers" junto con el método de volúmenes finitos (Toro 1999; Udrea 1999; LeVeque 1992 y 2005). La inclusión de efectos difusivos genera que los sistemas de ecuaciones resulten hiperbólicos-parabólicos. La contribución parabólica puede ser considerada como términos fuentes y tratada adicionalmente tanto en forma explícita como implícita (Udrea 1999; LeVeque 2005).Para analizar el flujo alrededor de cuerpos que ingresan en la atmósfera se utilizarán las ecuaciones de Navier-Stokes químicamente activas, mientras la temperatura no supere los 6000K. Para mayores temperaturas es necesario considerar efectos de ionización (Anderson, 1989). Tanto los efectos difusivos como los cambios químicos serán considerados como términos fuentes en las ecuaciones de Euler. Para tratar la propagación de ondas, transferencia de energía e inestabilidades en arcos magnéticos de la corona solar se utilizarán las ecuaciones de la magnetogasdinámica ideal y real. En este caso será también conveniente implementar términos fuente para el tratamiento de fenómenos de transporte como el flujo de calor y el de radiación. Los códigos utilizarán la técnica de volúmenes finitos, junto con esquemas "Total Variation Disminishing - TVD" sobre mallas estructuradas y no estructuradas.
Resumo:
Magdeburg, Univ., Diss, 2007
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2012
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
In this work we develop a viscoelastic bar element that can handle multiple rheo- logical laws with non-linear elastic and non-linear viscous material models. The bar element is built by joining in series an elastic and viscous bar, constraining the middle node position to the bar axis with a reduction method, and stati- cally condensing the internal degrees of freedom. We apply the methodology to the modelling of reversible softening with sti ness recovery both in 2D and 3D, a phenomenology also experimentally observed during stretching cycles on epithelial lung cell monolayers.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.