227 resultados para Neuropeptides.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing yet to be accomplished task in understanding behavior is to dissect the function of each gene involved in the development and function of a neuron. The C. elegans ALA neuron was chosen in this study for its known function in sleep, an ancient but less understood animal behavior. Single-cell transcriptome profiling identified 8,133 protein-coding genes in the ALA neuron, of which 57 are neuropeptide-coding genes. The most enriched genes are also neuropeptides. In combination with gain-of-function and loss-of-function assays, here I showed that the ALA-enriched FMRFamide neuropeptides, FLP-7, FLP-13, and FLP-24, are sufficient and necessary for inducing C. elegans sleep. These neuropeptides act as neuromodulators through GPCRs, NPR-7, and NPR-22. Further investigation in zebrafish indicates that FMRFamide neuropeptides are sleep-promoting molecules in animals. To correlate the behavioral outputs with genomic context, I constructed a gene regulatory network of the relevant genes controlling C. elegans sleep behavior through EGFR signaling in the ALA neuron. First, I identified an ALA cell-specific motif to conduct a genome-wide search for possible ALA-expressed genes. I then filtered out non ALA-expressed genes by comparing the motif-search genes with ALA transcriptomes from single-cell profiling. In corroborating with ChIP-seq data from modENCODE, I sorted out direct interaction of ALA-expressed transcription factors and differentiation genes in the EGFR sleep regulation pathway. This approach provides a network reference for the molecular regulation of C. elegans sleep behavior, and serves as an entry point for the understanding of functional genomics in animal behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin contains rich neuropeptides. In the present study, a novel neuromedin U (NmU) analog was isolated from skin secretions of Chinese red belly Load Bombina maxima. Being 17-amino acids long, its primary structure was established as DSSGIVGRPFFLFRPRN-NH2, in which the C-terminal 8-residue segment (FFLFRPRN) is the same as that of rat NmU, while the N-terminal part DSSGIVGRP shows a great sequence variation compared with those of NmU peptides from different resources. The peptide, named Bm-NmU-17, was found to elicit concentration-dependent contractile effects on smooth muscle of rat uterus horns. The cDNA Structure of the peptide, as obtained by a 3'-RACE strategy and subsequently cloning from a skin cDNA library, was found to contain a coding region of 438 nucleotides. The encoded precursor is composed of 145 amino acids with a single copy of Bm-NmU-17 located towards the C-terminus. The sequence of the peptide is preceded by a dibasic site (Lys-Arg) and followed by the sequence of Gly-Arg-Lys, providing the sites of cleavage and releasing of the mature peptide. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to feed on vertebrate blood has evolved many times in various arthropod clades. Consequently, saliva of blood-feeding arthropods has proven to be a rich source of antihemostatic molecules. A variety of platelet aggregation inhibitors antagonize platelet responses to wound-generated signals, including ADP, thrombin, and collagen. Anticoagulants disrupt elements of both the intrinsic and extrinsic pathways. Vasodilators include nitrophorins (nitric oxide storage and transport heme proteins), a variety of peptides that mimic endogenous vasodilatory neuropeptides, and proteins that catabolize or sequester endogenous vasoconstrictors. Multiple salivary proteins may be directed against each component of hemostasis, resulting in both redundancy and in some cases cooperative interactions between antihemostatic proteins. The complexity and redundancy of saliva ensures an efficient blood meal for the arthropod, but it also provides a diverse array of novel antihemostatic molecules for the pharmacologist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. the skin neurogenic inflammation is mainly related to Substance P (SP) and Calcitonin Gene-related Peptide (CGRP). There is no data on their availability in the dynamics of skin nerve endings, concerning their release and replenishment after a nociceptive stimulus, so this was investigated. Materials and methods. 25 rats were randomly distributed in 5 groups. the animals of the control group (CG) determined the baseline levels of neuropeptides in the skin. the groups S0 and S30 did not receive any cutaneous stimulus at 30 and 60 minutes, respectively. in the group S1, an incision stimulus was made at 30 minutes. in the group S31, a nociceptive stimulus was performed by subdermal scratching at 30 minutes and, at 60 minutes, the incision stimulus was carried out in the same location (nociceptive hyperstimulation). the skin samples of the other animals were harvested from the back 1 minute after their death. SP, pro-CGRP and CGRP were quantified by Western Blotting. Results. the incision stimulus released SP, S1 compared to S0 (p < 0.05) detected in the first minute, and the replenishment time was more than 30 minutes. Also, it cleaved pro-CGRP, S1 compared to S31 (p < 0.05) in the first minute, and its replenishment time less than 30 minutes. Release of CGRP was not detected. Conclusion. the incision released SP already detected in the first minute; its replenishment time is more than 30 minutes. the incision decreased pro-CGRP, also detected in the first minute; and its replenishment time is less than 30 minutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. METHODOLOGY: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. PRINCIPAL FINDINGS: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, but not the brain, are required to drive continued growth. CONCLUSIONS: During the last larval instar imaginal disk growth becomes decoupled from somatic growth at the time that the endocrine events of metamorphosis are initiated. These regulatory changes ensure that disk growth continues uninterrupted when the nutritive and endocrine signals undergo the drastic changes associated with metamorphosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infiltration of myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis in many types of cancer. The polypeptide chemokine PK2 (Bv8, PROK2) has been shown to regulate myeloid cell mobilization from the bone marrow, leading to activation of the angiogenic process, as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 were shown to display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. In this study we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the context of glioblastoma and pancreatic cancer xenograft tumor models. For the highly vascularized glioblastoma, PKRA7 was associated with decreased blood vessel density and increased necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 appears to be mediated by the blockage of myeloid cell migration/infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of certain pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both types of tumor. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by two distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-mullerian hormone, also called AMH, belongs to the large family of transforming growth factor P. Its role in the sexual differentiation of male fetus is now well known. Recently, AMH has been demonstrated to play an important role in the ovarian function. In fact, AMH seems to regulate the kinetics of follicular development, inhibiting the follicular recruitment and the follicular growth. Thus, this intra-gonadic cybernin could be a decisive determinant of the rapidity of follicular pool exhaustion. Today, some experimental data from the literature suggest that AMH could be a reliable marker of ovarian reserve. This review summarizes the present knowledge about AMH and its role in physiology but also in ovarian pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blood flukes Schistosoma mansoni and Schistosoma japonicum inflict immense suffering as agents of human schistosomiasis. Previous investigations have found the nervous systems of these worms contain abundant immunoreactivity to antisera targeting invertebrate neuropeptide Fs (NPFs) as well as structurally similar neuropeptides of the mammalian neuropeptide Y (NPY) family. Here, cDNAs encoding NPF in these worms were identified, and the mature neuropeptides from the two species differed by only a single amino acid. Both neuropeptides feature the characteristics common among NPFs; they are 36 amino acids long with a carboxyl-terminal Gly-Arg-X-Arg-Phe-amide and Tyr residues at positions 10 and 17 from the carboxyl terminus. Synthetic S. mansoni NPF potently inhibits the forskolin-stimulated accumulation of cAMP in worm homogenates, with significant effects at 10(-11) M. This is the first demonstration of an endogenous inhibition of cAMP by an NPF, and because this is the predominant pathway associated with vertebrate NPY family peptides, it demonstrates a conservation of downstream signaling pathways used by NPFs and NPY peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The study of periodontitis provides a unique model for assessing the involvement of neuropeptides in inflammatory disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Metabolism by peptidases plays an important role in modulating the levels of biologically-active neuropeptides. The metabolism of the anti-inflammatory neuropeptide calcitonin gene-related peptide (GCRP), but not the pro-inflammatory neuropeptides substance P (SP) and neurokinin A (NKA) by components of the gingival crevicular fluid (GCF), could potentiate the inflammatory process in periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past number of decades there has been considerable interest in the role of neurogenic inflammation in asthma with the identification of many biologically active neuropeptides in the lung. Whilst there is convincing evidence of neurogenic inflammation in various animal models of asthma, the evidence in humans is less clear and replicating the experimental approaches in humans has proven difficult with different studies producing conflicting results. In terms of human studies, research has focused on whether pro-inflammatory neuropeptides are elevated in the asthmatic airway, and if so, what their functional effects are. There have also been studies to assess the efficacy of tachykinin receptor antagonists in improving indices of asthma control. Information to date would suggest that neuropeptides are present in human airways and are possibly upregulated in asthma, but this effect does not appear to be specific and may occur in other inflammatory airways conditions (chronic obstructive pulmonary disease (COPD) and smoking). At present there is insufficient evidence to suggest that tachykinin receptor antagonists confer any additional benefit over inhaled corticosteroid regimes for asthmatic patients. © 2007 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gross anatomy of muscle and sensory/motor innervation of adult and intramolluscan developmental stages of Echinostoma caproni have been investigated to ascertain the organisation and the functional correlates of any stage-specific patterns of staining. Using indirect immunocytochemistry to demonstrate neuroactive substances and the phalloidin-fluorescence technique for staining myofibril F-actin, the muscle systems and aminergic and peptidergic innervation of daughter rediae, cercariae, metacercariae, and pre- and post-ovigerous adults were examined and compared using confocal scanning laser microscopy. A complex arrangement of specific muscle fibre systems occurs within the body wall (composed of circular, longitudinal and diagonal fibres), suckers (radial, equatorial, meridional), pharynx (radial, circular), gut caeca (mainly circular), cercarial tail (circular, pseudo-striated longitudinal), and ducts of the reproductive system (circular, longitudinal), presumed to serve locomotor, adhesive, alimentary and reproductive functions. Immunostaining for serotonin (5-HT) and FMRFamide-related peptides (FaRPs) was evident throughout the central (CNS) and peripheral (PNS) nervous systems of all stages, and use of dual-labelling techniques demonstrated separate neuronal pathways for 5-HT and FaRP in both CNS and PNS. FaRP expression in the innervation of the ootype wall was demonstrated only in post-ovigerous worms and not in pre-ovigerous worms, suggesting an involvement of FaRP neuropeptides in the process of egg assembly. Comparison of the present findings with those recorded for other digeneans suggests that muscle organisation and innervation patterns in trematodes are highly conserved.