905 resultados para Neuromuscular-junction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scaffolding protein at the neuromuscular junction, rapsyn, enables clustering of nicotinic acetylcholine receptors in high concentration and is critical for muscle function. Patients with insufficient receptor clustering suffer from muscle weakness. However, the detailed organization of the receptor-rapsyn network is poorly understood: it is unclear whether rapsyn first forms a wide meshwork to which receptors can subsequently dock or whether it only forms short bridges linking receptors together to make a large cluster. Furthermore, the number of rapsyn-binding sites per receptor (a heteropentamer) has been controversial. Here, we show by cryoelectron tomography and subtomogram averaging of Torpedo postsynaptic membrane that receptors are connected by up to three rapsyn bridges, the minimum number required to form a 2D network. Half of the receptors belong to rapsyn-connected groups comprising between two and fourteen receptors. Our results provide a structural basis for explaining the stability and low diffusion of receptors within clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise contribution of endoplasmic reticulum (ER) chaperone protein disulfide isomerase (PDI) variants in human amyotrophic lateral sclerosis (ALS) patients to the pathogenesis of ALS remained unclear. In the present study, Woehlbier et al (2016) demonstrated that these PDI variants are capable of altering motor neuron morphology, impairing the expression of synaptic proteins, and compromising neuromuscular junction (NMJ) integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La neurotoxina botulínica es producida por la bacteria anaerobia Clostridium botulinum (NTBo). Bloquea la transmisión neuromuscular por lo cual es utilizada para el tratamiento de enfermedades con hiperactividad muscular, bloqueando la liberación de acetilcolina y así la transmisión sináptica en la unión neuromuscular, lo que lleva al debilitamiento y atrofia de los músculos. Este mecanismo de acción motivó el uso de la toxina botulínica en las enfermedades con elevado tono muscular, como la distonía y la espasticidad, por lo cual también ha revolucionado la opción de tratamiento de los trastornos autónomos de hipersecreción. La sialorrea es un síntoma común en diversas enfermedades neurológicas. Las inyecciones de toxina botulínica, guiadas por ultrasonidos en las glándulas salivales, produce una disminución de la salivación excesiva en niños con deficiencias neurológicas como parálisis cerebral. La utilización de la toxina botulínica tipo A ha sido sugerida como tratamiento de la sialorrea en pacientes con parálisis cerebral (PC). Esta recomendación ha sido hecha por el efecto anticolinérgico de esta sustancia, principalmente por su capacidad para bloquear la liberación de acetilcolina a nivel de las membranas pre-sinápticas Aunque la respuesta al tratamrento es distinta en cada niño, en general se ha observado que cuanto más a menudo se utiliza la toxlna botulínica y más alta es la dosis utilizada, los resultados son mejores. Los expertos consideran conveniente el procedimiento porque muchos de estos pacientes están utilizando la toxina botulínica para sus problemas musculares y las distrntas condiciones pueden ser tratadas al mismo tiempo Se reporta la descripción de la aplicación de toxina botulínica en una paciente niña que concurre al Instituto de Rehabilitación Infantil TELETON de la ciudad de Valparaíso, Chile, con un trastorno motor severo y con salivación incontrolada persistente que provoca enfermedades respiratorias a repetición

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of the neuromuscular junction (NMJ) depends upon a nerve-derived protein, agrin, acting by means of a muscle-specific receptor tyrosine kinase, MuSK, as well as a required accessory receptor protein known as MASC. We report that MuSK does not merely play a structural role by demonstrating that MuSK kinase activity is required for inducing acetylcholine receptor (AChR) clustering. We also show that MuSK is necessary, and that MuSK kinase domain activation is sufficient, to mediate a key early event in NMJ formation—phosphorylation of the AChR. However, MuSK kinase domain activation and the resulting AChR phosphorylation are not sufficient for AChR clustering; thus we show that the MuSK ectodomain is also required. These results indicate that AChR phosphorylation is not the sole trigger of the clustering process. Moreover, our results suggest that, unlike the ectodomain of all other receptor tyrosine kinases, the MuSK ectodomain plays a required role in addition to simply mediating ligand binding and receptor dimerization, perhaps by helping to recruit NMJ components to a MuSK-based scaffold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration—or calcium sparks—were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular calcium ions were found important in key processes such as transmitter release, repetitive firing, and gene expression. Hence, we examined whether calcium sparks also exist in neurons. Using confocal laser-scanning microscopy and fluorescent probes, we found that calcium sparks exist in two types of neuronal preparations: the presynaptic boutons of the lizard neuromuscular junction and rat hippocampal neurons in cell culture. Control experiments exclude the possibility that these calcium sparks originate from instrumental or biological artifacts. Calcium sparks seem to be just the tip of the iceberg of a more general phenomenon of intracellular calcium “noise.” We speculate that calcium sparks and calcium noise may be of key importance in calcium signaling in the nervous system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dystrobrevin, a dystrophin-related and -associated protein, has been proposed to be important in the formation and maintenance of the neuromuscular junction. Dystrobrevin coprecipitates with both the acetylcholine receptor complex as well as the dystrophin glycoprotein complex. Although the nature of dystrobrevin’s association with the dystrophin glycoprotein complex remains unclear, it is known that dystrobrevin binds directly to the syntrophins, a heterologous group of dystrophin-associated proteins. Using the yeast two-hybrid system to identify protein–protein interactions, we present evidence for the heterodimerization of dystrobrevin directly with dystrophin. The C terminus of dystrobrevin binds specifically to the C terminus of dystrophin. We further refined this site of interaction to these proteins’ homologous coiled-coil motifs that flank their respective syntrophin-binding sites. We also show that the interaction between the dystrobrevin and dystrophin coiled-coil domains is specific and is not due to a nonspecific coiled-coil domain interaction. From the accumulated evidence of protein–protein interactions presented here and elsewhere, we propose a partially revised model of the organization of the dystrophin-associated glycoprotein complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Utrophin/dystrophin-related protein is the autosomal homologue of the chromosome X-encoded dystrophin protein. In adult skeletal muscle, utrophin is highly enriched at the neuromuscular junction. However, the molecular mechanisms underlying regulation of utrophin gene expression are yet to be defined. Here we demonstrate that the growth factor heregulin increases de novo utrophin transcription in muscle cell cultures. Using mutant reporter constructs of the utrophin promoter, we define the N-box region of the promoter as critical for heregulin-mediated activation. Using this region of the utrophin promoter for DNA affinity purification, immunoblots, in vitro kinase assays, electrophoretic mobility shift assays, and in vitro expression in cultured muscle cells, we demonstrate that ets-related GA-binding protein α/β transcription factors are activators of the utrophin promoter. Taken together, these results suggest that the GA-binding protein α/β complex of transcription factors binds and activates the utrophin promoter in response to heregulin-activated extracellular signal–regulated kinase in muscle cell cultures. These findings suggest methods for achieving utrophin up-regulation in Duchenne’s muscular dystrophy as well as mechanisms by which neurite-derived growth factors such as heregulin may influence the regulation of utrophin gene expression and subsequent enrichment at the neuromuscular junction of skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Mutations in genes encoding ChAT affecting motility exist in Caenorhabditis elegans and Drosophila, but no CHAT mutations have been observed in humans to date. Here we report that mutations in CHAT cause a congenital myasthenic syndrome associated with frequently fatal episodes of apnea (CMS-EA). Studies of the neuromuscular junction in this disease show a stimulation-dependent decrease of the amplitude of the miniature endplate potential and no deficiency of the ACh receptor. These findings point to a defect in ACh resynthesis or vesicular filling and to CHAT as one of the candidate genes. Direct sequencing of CHAT reveals 10 recessive mutations in five patients with CMS-EA. One mutation (523insCC) is a frameshifting null mutation. Three mutations (I305T, R420C, and E441K) markedly reduce ChAT expression in COS cells. Kinetic studies of nine bacterially expressed ChAT mutants demonstrate that one mutant (E441K) lacks catalytic activity, and eight mutants (L210P, P211A, I305T, R420C, R482G, S498L, V506L, and R560H) have significantly impaired catalytic efficiencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of the epsilon-subunit gene of the acetylcholine receptor (AChR) by myonuclei located at the neuromuscular junction is precisely regulated during development. A key role in this regulation is played by the synaptic portion of the basal lamina, a structure that is also known to contain agrin, a component responsible for the formation of postsynaptic specializations. We tested whether agrin has a function in synaptic AChR gene expression. Synaptic basal lamina from native adult muscle and recombinant agrin bound to various substrates induced in cultured rat myotubes AChR clusters that were colocalized with epsilon-subunit mRNA. Estimation of transcript levels by Northern hybridization analysis of total RNA showed a significant increase when myotubes were grown on substrate impregnated with agrin, but were unchanged when agrin was applied in the medium. The effect was independent of the receptor aggregating activity of the agrin isoform used, and agrin acted, at least in part, at the level of epsilon-subunit gene transcription. These findings are consistent with a role of agrin in the regulation of AChR subunit gene expression at the neuromuscular junction, which would depend on its binding to the synaptic basal lamina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paraneoplastic neurologic disorders (PNDs) are believed to be autoimmune neuronal degenerations that develop in some patients with systemic cancer. A series of genes encoding previously undiscovered neuronal proteins have been cloned using antiserum from PND patients. Identification of these onconeural antigens suggests a reclassification of the disorders into four groups: those in which neuromuscular junction proteins, nerve terminal/vesicle-associated proteins, neuronal RNA binding proteins, or neuronal signal-transduction proteins serve as target antigens. This review considers insights into basic neurobiology, tumor immunology, and autoimmune neuronal degeneration offered by the characterization of the onconeural antigens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frequenin was originally identified in Drosophila melanogaster as a Ca(2+)-binding protein facilitating transmitter release at the neuromuscular junction. We have cloned the Xenopus frequenin (Xfreq) by PCR using degenerate primers combined with low-stringency hybridization. The deduced protein has 70% identity with Drosophila frequenin and about 38-58% identity with other Ca(2+)-binding proteins. The most prominent features are the four EF-hands, Ca(2+)-binding motifs. Xfreq mRNA is abundant in the brain and virtually nondetectable from adult muscle. Western blot analysis indicated that Xfreq is highly concentrated in the adult brain and is absent from nonneural tissues such as heart and kidney. During development, the expression of the protein correlated well with the maturation of neuromuscular synapses. To determine the function of Xfreq at the developing neuromuscular junction, the recombinant protein was introduced into Xenopus embryonic spinal neurons by early blastomere injection. Synapses made by spinal neurons containing exogenous Xfreq exhibited a much higher synaptic efficacy. These results provide direct evidence that frequenin enhances transmitter release at the vertebrate neuromuscular synapse and suggest its potential role in synaptic development and plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary goal of this thesis was to determine if spaced synaptic stimulation induced the differential expression of microRNAs (miRNAs) in the Drosophila melanogaster central nervous system (CNS). Prior to attaining this goal, we needed to identify and validate a spaced stimulation paradigm that could induce the formation of new synaptic growth at a model synapse, the larval neuromuscular junction (NMJ). Both Channelrhodopsin- and high potassium-based stimulation paradigms adapted from (Ataman, et al. 2008) were tested. Once validation of these paradigms was complete, we sought to characterize the miRNA expression profile of the larval CNS by miRNA array. Following attainment of these data, we used quantitative real-time PCR (RT-qPCR) to determine if acute synaptic stimulation caused the differential expression of neuronal miRNAs. We found that upon high potassium spaced training in a wild type (Canton S) genotype, 5 miRNAs showed significant differential expression when normalized to a validated reference gene, the U1 snRNA. Moreover, absolute quantification of our RT-qPCR study implicated one miRNA: miR-958 as being significantly regulated by activity. Investigation into potential targets for miR-958 revealed it to be a potential regular of Dlar, a protein tyrosine phosphatase implicated in synapse development. This investigation provides the foundation to directly test our underlying hypothesis that, following spaced training, differential expression of miRNAs alters the translation of proteins required to induce and maintain these structural changes at the synapse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.