927 resultados para Networks on chip (NoC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social networks on the internet have experienced rapid growth and joined millions of users in Brazil and throughout the world. Such networks allow groups of people to communicate and exchange information. Sharing information in files is also a growing activity on the internet and is done in various ways. However, applications are not yet available to enable file sharing on Facebook, the premier social network today. This study aims to investigate how users use Facebook, and their practices for file sharing. Due to the experimental nature of this research, we opted for a data collection survey, applied over the web. From the data analysis, we have found a frequent use of file sharing, but no interest in paid services. As for Facebook, there was an extensive use of applications. The set of results shows a favourable scenario for applications that allow file sharing on Facebook.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the electronics embedded applications forces electronics systems designers to match their ever increasing requirements. This evolution pushes the computational power of digital signal processing systems, as well as the energy required to accomplish the computations, due to the increasing mobility of such applications. Current approaches used to match these requirements relies on the adoption of application specific signal processors. Such kind of devices exploits powerful accelerators, which are able to match both performance and energy requirements. On the other hand, the too high specificity of such accelerators often results in a lack of flexibility which affects non-recurrent engineering costs, time to market, and market volumes too. The state of the art mainly proposes two solutions to overcome these issues with the ambition of delivering reasonable performance and energy efficiency: reconfigurable computing and multi-processors computing. All of these solutions benefits from the post-fabrication programmability, that definitively results in an increased flexibility. Nevertheless, the gap between these approaches and dedicated hardware is still too high for many application domains, especially when targeting the mobile world. In this scenario, flexible and energy efficient acceleration can be achieved by merging these two computational paradigms, in order to address all the above introduced constraints. This thesis focuses on the exploration of the design and application spectrum of reconfigurable computing, exploited as application specific accelerators for multi-processors systems on chip. More specifically, it introduces a reconfigurable digital signal processor featuring a heterogeneous set of reconfigurable engines, and a homogeneous multi-core system, exploiting three different flavours of reconfigurable and mask-programmable technologies as implementation platform for applications specific accelerators. In this work, the various trade-offs concerning the utilization multi-core platforms and the different configuration technologies are explored, characterizing the design space of the proposed approach in terms of programmability, performance, energy efficiency and manufacturing costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro di tesi, svolto presso i laboratori dell'X-ray Imaging Group del Dipartimento di Fisica e Astronomia dell'Università di Bologna e all'interno del progetto della V Commissione Scientifica Nazionale dell'INFN, COSA (Computing on SoC Architectures), ha come obiettivo il porting e l’analisi di un codice di ricostruzione tomografica su architetture GPU installate su System-On-Chip low-power, al fine di sviluppare un metodo portatile, economico e relativamente veloce. Dall'analisi computazionale sono state sviluppate tre diverse versioni del porting in CUDA C: nella prima ci si è limitati a trasporre la parte più onerosa del calcolo sulla scheda grafica, nella seconda si sfrutta la velocità del calcolo matriciale propria del coprocessore (facendo coincidere ogni pixel con una singola unità di calcolo parallelo), mentre la terza è un miglioramento della precedente versione ottimizzata ulteriormente. La terza versione è quella definitiva scelta perché è la più performante sia dal punto di vista del tempo di ricostruzione della singola slice sia a livello di risparmio energetico. Il porting sviluppato è stato confrontato con altre due parallelizzazioni in OpenMP ed MPI. Si è studiato quindi, sia su cluster HPC, sia su cluster SoC low-power (utilizzando in particolare la scheda quad-core Tegra K1), l’efficienza di ogni paradigma in funzione della velocità di calcolo e dell’energia impiegata. La soluzione da noi proposta prevede la combinazione del porting in OpenMP e di quello in CUDA C. Tre core CPU vengono riservati per l'esecuzione del codice in OpenMP, il quarto per gestire la GPU usando il porting in CUDA C. Questa doppia parallelizzazione ha la massima efficienza in funzione della potenza e dell’energia, mentre il cluster HPC ha la massima efficienza in velocità di calcolo. Il metodo proposto quindi permetterebbe di sfruttare quasi completamente le potenzialità della CPU e GPU con un costo molto contenuto. Una possibile ottimizzazione futura potrebbe prevedere la ricostruzione di due slice contemporaneamente sulla GPU, raddoppiando circa la velocità totale e sfruttando al meglio l’hardware. Questo studio ha dato risultati molto soddisfacenti, infatti, è possibile con solo tre schede TK1 eguagliare e forse a superare, in seguito, la potenza di calcolo di un server tradizionale con il vantaggio aggiunto di avere un sistema portatile, a basso consumo e costo. Questa ricerca si va a porre nell’ambito del computing come uno tra i primi studi effettivi su architetture SoC low-power e sul loro impiego in ambito scientifico, con risultati molto promettenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidic systems have become competitive tools in the invitro modelling of diseases and promising alternatives to animal studies. They allow obtaining more invivo like conditions for cellular assays. Research in idiopathic pulmonary fibrosis could benefit from this novel methodological approach to understand the pathophysiology of the disease & develop efficient therapies. The use of hepatocyte growth factor (HGF) for alveolar reepithelisation is a promising approach. In this study, we show a new microfluidic system to analyse the effects of HGF on injured alveolar epithelial cells. Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells (10,000 cells) were seeded and studied in these microfluidic systems with media perfusion (1μl/30min). Injury tests were made on the cells by the perfusion with media containing H2O2 or bleomycin. The degree of injury was then assessed by a metabolic and an apoptotic assays. Wound assays were also performed with a central laminar flow of trypsin. Monitoring of wound closure with HGF vs control media was assessed. The alveolar A549 epithelial cells grew and proliferated in the microfluidic system. In the wound closure assay, the degree of wound closure after 5 hours was (53.3±1.3%) with HGF compared to (9.8±2.4%) without HGF (P <0.001). We present a novel microfluidic model that allows culture, injury and wounding of A549 epithelial cells and represents the first step towards the development of an invitro reconstitution of the alveolar-capillary interface. We were also able to confirm that HGF increased alveolar epithelial repair in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Many flow-cytometric cell characterization methods require costly markers and colour reagents. We present here a novel device for cell discrimination based on impedance measurement of electrical cell properties in a microfluidic chip, without the need of extensive sample preparation steps and the requirement of labelling dyes. MATERIALS AND METHODS, RESULTS: We demonstrate that in-flow single cell measurements in our microchip allow for discrimination of various cell line types, such as undifferentiated mouse fibroblasts 3T3-L1 and adipocytes on the one hand, or human monocytes and in vitro differentiated dendritic cells and macrophages on the other hand. In addition, viability and apoptosis analyses were carried out successfully for Jurkat cell models. Studies on several species, including bacteria or fungi, demonstrate not only the capability to enumerate these cells, but also show that even other microbiological life cycle phases can be visualized. CONCLUSIONS: These results underline the potential of impedance spectroscopy flow cytometry as a valuable complement to other known cytometers and cell detection systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report about a lung-on-chip array that mimics the pulmonary parenchymal environment, including the thin, alveolar barrier and the three-dimensional cyclic strain induced by the breathing movements. A micro-diaphragm used to stretch the alveolar barrier is inspired by the in-vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in-vivo conditions found in the lung parenchyma, but also at making its handling easy and robust. An innovative concept, based on the reversible bonding of the device, is presented that enables to accurately control the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that formed tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we could also demonstrate that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by the breathing in pulmonary research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual framework based on the Health Belief Model was proposed which identified those factors most significant in the prediction of compliance behavior. The hypothesized model was applied to analyze the effects of sociodemographic characteristics, self-assessed health status, and social support networks on compliance with antihypertensive regimens, focusing on black adults.^ The study population was selected from the National Health and Examination Survey II (NHANES II) which produced a sample of 3,957 eligible persons 35-74 years of age.^ The study addressed the following research questions: (a) what is the relationship between demographic variables and self-assessed health status, (b) what is the relationship between social support network and self-assessed health status, (c) what is the compliance, (d) what factors, e.g., demographic characteristics, social support network, self-assessed health status, are most related to compliance, and (e) does the effect of these factors on compliance differ between black and white adults?^ The results of the study found that blacks: (a) had poorer health than whites, and education and income were significantly related to self-assessed health status, (b) the stronger social support networks of blacks, the better their health status, and (c) older blacks and those in poorer health were more likely to comply with recommended treatment. The hypothesized conceptual model for the prediction of compliance behavior was partially substantiated for both blacks and whites.^ Implications for the application of the conceptual model are also discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the potential impact of social media and new technologies in secondary education. The case of study has been designed for the drama and theatre subject. A wide set of tools like social networks, blogs, internet, multimedia content, local press and other promotional tools are promoted to increase students’ motivation. The experiment was developed at the highschool IES Al-Satt located in Algete in the Comunidad de Madrid. The students included in the theatre group present a low academic level, 80% of them had previously repeated at least one grade, half of them come from programs for students with learning difficulties and were at risk of social exclusion. This action is supported by higher and secondary education professors and teachers who look forward to implanting networked media technologies as new tools to improve the academic results and the degree of involvement of students. The results of the experiment have been excellent, based on satisfactory opinions obtained from a survey answered by students at the end of the course, and also revealed by the analytics taken from different social networks. This project is a pioneer in the introduction and usage of new technologies in secondary high-schools in Spain.