908 resultados para NIR spectroscopy. Hair. Forensic analysis. PCA. Nicotine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Digital forensics is a rapidly expanding field, due to the continuing advances in computer technology and increases in data stage capabilities of devices. However, the tools supporting digital forensics investigations have not kept pace with this evolution, often leaving the investigator to analyse large volumes of textual data and rely heavily on their own intuition and experience. Aim: This research proposes that given the ability of information visualisation to provide an end user with an intuitive way to rapidly analyse large volumes of complex data, such approached could be applied to digital forensics datasets. Such methods will be investigated; supported by a review of literature regarding the use of such techniques in other fields. The hypothesis of this research body is that by utilising exploratory information visualisation techniques in the form of a tool to support digital forensic investigations, gains in investigative effectiveness can be realised. Method:To test the hypothesis, this research examines three different case studies which look at different forms of information visualisation and their implementation with a digital forensic dataset. Two of these case studies take the form of prototype tools developed by the researcher, and one case study utilises a tool created by a third party research group. A pilot study by the researcher is conducted on these cases, with the strengths and weaknesses of each being drawn into the next case study. The culmination of these case studies is a prototype tool which was developed to resemble a timeline visualisation of the user behaviour on a device. This tool was subjected to an experiment involving a class of university digital forensics students who were given a number of questions about a synthetic digital forensic dataset. Approximately half were given the prototype tool, named Insight, to use, and the others given a common open-source tool. The assessed metrics included: how long the participants took to complete all tasks, how accurate their answers to the tasks were, and how easy the participants found the tasks to complete. They were also asked for their feedback at multiple points throughout the task. Results:The results showed that there was a statistically significant increase in accuracy for one of the six tasks for the participants using the Insight prototype tool. Participants also found completing two of the six tasks significantly easier when using the prototype tool. There were no statistically significant different difference between the completion times of both participant groups. There were no statistically significant differences in the accuracy of participant answers for five of the six tasks. Conclusions: The results from this body of research show that there is evidence to suggest that there is the potential for gains in investigative effectiveness when information visualisation techniques are applied to a digital forensic dataset. Specifically, in some scenarios, the investigator can draw conclusions which are more accurate than those drawn when using primarily textual tools. There is also evidence so suggest that the investigators found these conclusions to be reached significantly more easily when using a tool with a visual format. None of the scenarios led to the investigators being at a significant disadvantage in terms of accuracy or usability when using the prototype visual tool over the textual tool. It is noted that this research did not show that the use of information visualisation techniques leads to any statistically significant difference in the time taken to complete a digital forensics investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper characterizes humic substances (HS) extracted from soil samples collected in the Rio Negro basin in the state of Amazonas, Brazil, particularly investigating their reduction capabilities towards Hg(II) in order to elucidate potential mercury cycling/volatilization in this environment. For this reason, a multimethod approach was used, consisting of both instrumental methods (elemental analysis, EPR, solid-state NMR, FIA combined with cold-vapor AAS of Hg(0)) and statistical methods such as principal component analysis (PCA) and a central composite factorial planning method. The HS under study were divided into groups, complexing and reducing ones, owing to different distribution of their functionalities. The main functionalities (cor)related with reduction of Hg(II) were phenolic, carboxylic and amide groups, while the groups related with complexation of Hg(II) were ethers, hydroxyls, aldehydes and ketones. The HS extracted from floodable regions of the Rio Negro basin presented a greater capacity to retain (to complex, to adsorb physically and/or chemically) Hg(II), while nonfloodable regions showed a greater capacity to reduce Hg(II), indicating that HS extracted from different types of regions contribute in different ways to the biogeochemical mercury cycle in the basin of the mid-Rio Negro, AM, Brazil. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

String searching within a large corpus of data is an important component of digital forensic (DF) analysis techniques such as file carving. The continuing increase in capacity of consumer storage devices requires corresponding im-provements to the performance of string searching techniques. As string search-ing is a trivially-parallelisable problem, GPGPU approaches are a natural fit – but previous studies have found that local storage presents an insurmountable performance bottleneck. We show that this need not be the case with modern hardware, and demonstrate substantial performance improvements from the use of single and multiple GPUs when searching for strings within a typical forensic disk image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative study based on spectroscopic analysis of the materials used to produce four sixteenth-century Manueline Charters (the Charters of Alcochete, Terena, Alandroal and Evora) was performed following a systematic analytical approach. SEM–EDS, l-Raman and l-FTIR analysis highlighted interesting features between them, namely the use of different pigments and colourants (such as different green and yellow pigments), the presence of pigments alterations and the use of a non-expected extemporaneous material (with the presence of titanium white in the Charter of Alcochete). Principal component analysis restricted to the C–H absorption region (3000–2840 cm-1) was applied to 36 infrared spectra of blue historical samples from the Charters of Alcochete,Terena, Alandroal and Évora, suggesting the use of a mixture of a triglyceride and polysaccharide as binder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portanto, o objetivo deste trabalho foi avaliar a influência de diferentes cultivares e sazonalidade do açaí utilizando a técnica de 1H NMR para criação de perfis de impressão digital associada a métodos quimiométricos, obtidos a partir de frutos geneticamente modificados (cultivada no controle agronômico) e o comércio na cidade de Belém

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hair is a relatively inert biopolymer and can survive through natural disasters. It is also found as trace evidence at crime scenes. Previous studies by FTIRMicrospectroscopy and – Attenuated Total Reflectance (ATR) successfully showed that hairs can be matched and discriminated on the basis of gender, race and hair treatment, when interpreted by chemometrics. However, these spectroscopic techniques are difficult to operate at- or on-field. On the other hand, some near infrared spectroscopic (NIRS) instruments equipped with an optical probe, are portable and thus, facilitate the on- or at –field measurements for potential application directly at a crime or disaster scene. This thesis is focused on bulk hair samples, which are free of their roots, and thus, independent of potential DNA contribution for identification. It explores the building of a profile of an individual with the use of the NIRS technique on the basis of information on gender, race and treated hair, i.e. variables which can match and discriminate individuals. The complex spectra collected may be compared and interpreted with the use of chemometrics. These methods can then be used as protocol for further investigations. Water is a common substance present at forensic scenes e.g. at home in a bath, in the swimming pool; it is also common outdoors in the sea, river, dam, puddles and especially during DVI incidents at the seashore after a tsunami. For this reason, the matching and discrimination of bulk hair samples after the water immersion treatment was also explored. Through this research, it was found that Near Infrared Spectroscopy, with the use of an optical probe, has successfully matched and discriminated bulk hair samples to build a profile for the possible application to a crime or disaster scene. Through the interpretation of Chemometrics, such characteristics included Gender and Race. A novel approach was to measure the spectra not only in the usual NIR range (4000 – 7500 cm-1) but also in the Visible NIR (7500 – 12800 cm-1). This proved to be particularly useful in exploring the discrimination of differently coloured hair, e.g. naturally coloured, bleached or dyed. The NIR region is sensitive to molecular vibrations of the hair fibre structure as well as that of the dyes and damage from bleaching. But the Visible NIR region preferentially responds to the natural colourants, the melanin, which involves electronic transitions. This approach was shown to provide improved discrimination between dyed and untreated hair. This thesis is an extensive study of the application of NIRS with the aid of chemometrics, for matching and discrimination of bulk human scalp hair. The work not only indicates the strong potential of this technique in this field but also breaks new ground with the exploration of the use of the NIR and Visible NIR ranges for spectral sampling. It also develops methods for measuring spectra from hair which has been immersed in different water media (sea, river and dam)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.