915 resultados para Nürnberger condition
Resumo:
The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.
Resumo:
Background. This paper aimed to identify condition-specific patient-reported outcome measures used in clinical trials among people with wrist osteoarthritis and summarise empirical peer-reviewed evidence supporting their reliability, validity, and responsiveness to change. Methods. A systematic review of randomised controlled trials among people with wrist osteoarthritis was undertaken. Studies reporting reliability, validity, or responsiveness were identified using a systematic reverse citation trail audit procedure. Psychometric properties of the instruments were examined against predefined criteria and summarised. Results. Thirteen clinical trials met inclusion criteria. The most common patient-reported outcome was the disabilities of the arm, shoulder, and hand questionnaire (DASH). The DASH, the Michigan Hand Outcomes Questionnaire (MHQ), the Patient Evaluation Measure (PEM), and the Patient-Reported Wrist Evaluation (PRWE) had evidence supporting their reliability, validity, and responsiveness. A post-hoc review of excluded studies revealed the AUSCAN Osteoarthritis Hand Index as another suitable instrument that had favourable reliability, validity, and responsiveness. Conclusions. The DASH, MHQ, and AUSCAN Osteoarthritis Hand Index instruments were supported by the most favourable empirical evidence for validity, reliability, and responsiveness. The PEM and PRWE also had favourable empirical evidence reported for these elements. Further psychometric testing of these instruments among people with wrist osteoarthritis is warranted.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
This article provides a consideration of the problem of equity in education. In the first part of the discussion, the author draws on philosophical and sociological literatures to consider what equity means and its implications for education. Drawing on work by Burbules, Lord & Sherman, she looks to curriculum as a condition of access and the importance of learning support structures in bringing about equitable educational outcomes, conceived in terms of Amy Gutmanns’s democratic threshold. The paper offers a conceptual-theoretical model for thinking about the resourcing and curricular requirements for equity in contemporary liberal democratic societies, contrasting the social and economic policy mixes employed by governments situated at different points along a liberty/equality continuum.
Resumo:
Railroad corridors contain large number of Insulated Rail Joints (IRJs) that act as safety critical elements in the circuitries of the signaling and broken rail identification systems. IRJs are regarded as sources of excitation for the passage of loaded wheels leading to high impact forces; these forces in turn cause dips, cross levels and twists to the railroad geometry in close proximity to the sections containing the IRJs in addition to the local damages to the railhead of the IRJs. Therefore, a systematic monitoring of the IRJs in railroad is prudent to mitigate potential risk of their sudden failure (e.g., broken tie plates) under the traffic. This paper presents a simple method of periodic recording of images using time-lapse photography and total station surveying measurements to understand the ongoing deterioration of the IRJs and their surroundings. Over a 500 day period, data were collected to examine the trends in narrowing of the joint gap due to plastic deformation the railhead edges and the dips, cross levels and twists caused to the railroad geometry due to the settlement of ties (sleepers) around the IRJs. The results reflect that the average progressive settlement beneath the IRJs is larger than that under the continuously welded rail, which leads to excessive deviation of railroad profile, cross levels and twists.
Resumo:
Most existing research on maintenance optimisation for multi-component systems only considers the lifetime distribution of the components. When the condition-based maintenance (CBM) strategy is adopted for multi-component systems, the strategy structure becomes complex due to the large number of component states and their combinations. Consequently, some predetermined maintenance strategy structures are often assumed before the maintenance optimisation of a multi-component system in a CBM context. Developing these predetermined strategy structure needs expert experience and the optimality of these strategies is often not proofed. This paper proposed a maintenance optimisation method that does not require any predetermined strategy structure for a two-component series system. The proposed method is developed based on the semi-Markov decision process (SMDP). A simulation study shows that the proposed method can identify the optimal maintenance strategy adaptively for different maintenance costs and parameters of degradation processes. The optimal maintenance strategy structure is also investigated in the simulation study, which provides reference for further research in maintenance optimisation of multi-component systems.
Resumo:
Objective: To determine the impact of a free-choice diet on nutritional intake and body condition of feral horses. Animals: Cadavers of 41 feral horses from 5 Australian locations. Procedures: Body condition score (BCS) was determined (scale of 1 to 9), and the stomach was removed from horses during postmortem examination. Stomach contents were analyzed for nutritional variables and macroelement and microelement concentrations. Data were compared among the locations and also compared with recommended daily intakes for horses. Results: Mean BCS varied by location; all horses were judged to be moderately thin. The BCS for males was 1 to 3 points higher than that of females. Amount of protein in the stomach contents varied from 4.3% to 14.9% and was significantly associated with BCS. Amounts of water-soluble carbohydrate and ethanol-soluble carbohydrate in stomach contents of feral horses from all 5 locations were higher than those expected for horses eating high-quality forage. Some macroelement and microelement concentrations were grossly excessive, whereas others were grossly deficient. There was no evidence of ill health among the horses. Conclusions and Clinical Relevance: Results suggested that the diet for several populations of feral horses in Australia appeared less than optimal. However, neither low BCS nor trace mineral deficiency appeared to affect survival of the horses. Additional studies on food sources in these regions, including analysis of water-soluble carbohydrate, ethanol-soluble carbohydrate, and mineral concentrations, are warranted to determine the provenance of such rich sources of nutrients. Determination of the optimal diet for horses may need revision.
Resumo:
Vacuum circuit breaker (VCB) overvoltage failure and its catastrophic failures during shunt reactor switching have been analyzed through computer simulations for multiple reignitions with a statistical VCB model found in the literature. However, a systematic review (SR) that is related to the multiple reignitions with a statistical VCB model does not yet exist. Therefore, this paper aims to analyze and explore the multiple reignitions with a statistical VCB model. It examines the salient points, research gaps and limitations of the multiple reignition phenomenon to assist with future investigations following the SR search. Based on the SR results, seven issues and two approaches to enhance the current statistical VCB model are identified. These results will be useful as an input to improve the computer modeling accuracy as well as the development of a reignition switch model with point-on-wave controlled switching for condition monitoring
Resumo:
In this research fluidization behavior of cubical Bovine intestine samples was studied. Bovine intestine samples were heat pump dried at atmospheric pressure and at emperatures below and above the material freezing points. Experiments were conducted to study fluidization characteristics and drying kinetics at different drying conditions. Bovine particles were characterized according to Geldart classification and minimum fluidization velocity was calculated using Ergun Equation and generalized equation for all drying conditions at the beginning of the trials and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. Walli’s values determined were positive at the beginning and end of all trials indicating stable fluidisation at the beginning and end for each drying condition.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
This thesis represents a major step forward in understanding the link between the development of combustion related faults in diesel engines and the generation of acoustic emissions. The findings presented throughout the thesis provide a foundation so that future diesel engine monitoring systems are able to more effectively detect and monitor developing faults. In undertaking this research knowledge concerning engine function and relevant failure mechanisms was combined with different modelling methods to generate a framework that was used to effectively identify fault related activity within acoustic emissions recorded from different engines.
Resumo:
Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.
Resumo:
In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.