993 resultados para Muscle-skeketal symptoms
Resumo:
Purpose: The aim of this study was to characterize the clinical signs, symptoms, and ocular and systemic comorbidities in a large case series of contact lens-related microbial keratitis. Methods: Two hundred ninety-seven cases of contact lens-related microbial keratitis, aged between 15 and 64 years were detected through surveillance of hospital and community based ophthalmic practitioners in Australia and New Zealand. Full clinical data were available for 190 cases and 90 were interviewed by telephone. Clinical data included the size, location, and degree of anterior chamber response. Symptom data were available from the practitioner and from participant self-report. Associations between symptoms and disease severity were evaluated. Data on ocular and systemic disease were collected from participants and practitioners. The frequency of comorbidities was compared between the different severities of disease and to population norms. Results: More severe disease was associated with greater symptom severity and pain was the most prevalent symptom reported. Ninety-one percent of cases showed progression of ocular symptoms after lens removal, and symptom progression was associated with all severities of disease. Twenty-five percent of cases reported prior episodes requiring emergency attention. Thyroid disease (p 0.05) and self-reported poor health (p 0.001) were more common in cases compared with age-matched population norms. Discussion: Information on the signs, symptoms, and comorbidities associated with contact lens-related microbial keratitis may be useful in patient education and for practitioners involved in the fitting of lenses and management of complications. Although pain was the most common symptom experienced, progression of symptoms despite lens removal was close to universal. Poor general health, particularly respiratory disease and thyroid disease was more common in cases than in the general population, which may prompt practitioners to recommend flexibility in wear schedules when in poor health or the selection of a lower risk wear schedule in at risk patients
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.
Resumo:
Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.
Resumo:
Post-concussion syndrome (PCS) is a controversial constellation of cognitive, emotional, and physical symptoms that some patients experience following a mild traumatic brain injury or concussion. PCS-like symptoms are commonly found in individuals with depression, pain, and stress, as well as healthy individuals. This study investigated the base rate of PCS symptoms in a healthy sample of 96 participants and examined the relationship between these symptoms, depression, and sample demographics. PCS symptoms were assessed using the British-Columbia Post-Concussion Symptom Inventory. Depression was measured using the Beck Depression Inventory II. Results demonstrated that: The base rate of PCS was very high; there was a strong positive relationship between depression and PCS; and demographic characteristics were not related to PCS in this sample. These findings are broadly consistent with literature suggesting a significant role for non-neurological factors in the expression of PCS symptomatology. This study adds to the growing body of literature that calls for caution in the clinical interpretation of results from PCS symptom inventories.
Resumo:
Introduction: This cross-cultural study compared both the symptoms of anxiety and their severity in a community sample of children from Colombia and Australia. Method: The sample comprised 516 children (253 Australian children and 263 Colombian children), aged 8 to 12-years-old. The Spence Children’s Anxiety Scale (SCAS) was used to measure both the symptoms and levels of anxiety. Results: The results showed a significant difference in the severity of the symptoms between the children in the two countries. In general, Colombian children reported more severe symptoms than their Australian peers, however there were no difference in the types of symptoms reported by the children in the two countries. Discussion and Conclusion: The implications of these findings and their importance to cross-cultural research are discussed.
Resumo:
The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.
Resumo:
In the current study, we tested whether school connectedness mediates more distal deficits in social skills in influencing depressive symptoms in a sample of 127 sixth- and seventh-grade students. Results demonstrated that school connectedness and social skills accounted for 44% and 26% of variance in depressive symptoms respectively and 49% in a combined model. Although the full mediation model hypothesis was not supported, follow-up analyses revealed that school connectedness partially mediated the link between social skills and preadolescent depressive symptoms. Thus, school connectedness appears to play as strong a role in depressive symptoms in this younger preadolescent age group.
Resumo:
Introduction: Management of osteoarthritis (OA) includes the use of non-pharmacological and pharmacological therapies. Although walking is commonly recommended for reducing pain and increasing physical function in people with OA, glucosamine sulphate has also been used to alleviate pain and slow the progression of OA. This study evaluated the effects of a progressive walking program and glucosamine sulphate intake on OA symptoms and physical activity participation in people with mild to moderate hip or knee OA. Methods: Thirty-six low active participants (aged 42 to 73 years) were provided with 1500 mg glucosamine sulphate per day for 6 weeks, after which they began a 12-week progressive walking program, while continuing to take glucosamine. They were randomized to walk 3 or 5 days per week and given a pedometer to monitor step counts. For both groups, step level of walking was gradually increased to 3000 steps/day during the first 6 weeks of walking, and to 6000 steps/day for the next 6 weeks. Primary outcomes included physical activity levels, physical function (self-paced step test), and the WOMAC Osteoarthritis Index for pain, stiffness and physical function. Assessments were conducted at baseline and at 6-, 12-, 18-, and 24-week follow-ups. The Mann Whitney Test was used to examine differences in outcome measures between groups at each assessment, and the Wilcoxon Signed Ranks Test was used to examine differences in outcome measures between assessments. Results: During the first 6 weeks of the study (glucosamine supplementation only), physical activity levels, physical function, and total WOMAC scores improved (P<0.05). Between the start of the walking program (Week 6) and the final follow-up (Week 24), further improvements were seen in these outcomes (P<0.05) although most improvements were seen between Weeks 6 and 12. No significant differences were found between walking groups. Conclusions: In people with hip or knee OA, walking a minimum of 3000 steps (~30 minutes), at least 3 days/week, in combination with glucosamine sulphate, may reduce OA symptoms. A more robust study with a larger sample is needed to support these preliminary findings. Trial Registration: Australian Clinical Trials Registry ACTRN012607000159459.
Resumo:
This investigation describes the prevalence of upper-body symptoms in a population-based sample of women with breast cancer (BC) and examines their relationships with upper-body function (UBF) and lymphoedema, as two clinically important sequelae. Australian women (n=287) with unilateral BC were assessed at three-monthly intervals, from six to 18 months post-surgery (PS). Participants reported the presence and intensity of upper-body symptoms on the treated side. Objective and self-reported UBF and lymphoedema (bioimpedance spectroscopy) were also assessed. Approximately 50% of women reported at least one moderate-to-extreme symptom at 6- and at 18-months PS. There was a significant relationship between symptoms and function (p<0.01), whereby perceived and objective function declined with increasing number of symptoms present. Those with lymphoedema were more likely to report multiple symptoms and presence of symptoms at baseline increased risk of lymphoedema (ORs>1.3, p=0.02). Although, presence of symptoms explained only 5.5% of the variation in the odds of lymphoedema. Upper-body symptoms are common and persistent following breast cancer and are associated with clinical ramifications, including reduced UBF and increased risk of developing lymphoedema. However, using the presence of symptoms as a diagnostic indicator of lymphoedema is limited.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by 31P MRS). Age was related to increased walking economy (low VO2, r = −0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (−0.26, P < 0.03). However, age was associated with reduced WE (−0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age −0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age −0.25, P < 0.02). Inclusion of VO2max and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.
Resumo:
Rupestris stem pitting (rSP), a graft-transmissible grapevine disease, can be identified only by its reaction (pitted wood) on inoculated Vitis rupestris ‘St. George.’ DsRNA was extracted from grapevines from California and Canada that indexed positive for rSP on St. George. Two distinct dsRNA species (B and C) (Mr = 5.3 × 106 and 4.4 × 106, respectively) were detected from the stem tissue of rSP-positive samples. Although similar dsRNA species (B and C) were detected in extracts of grapevines from New York, the association of dsRNA B and C with rSP in New York samples was not consistent. Also, eight different dsRNAs, known to be associated with the powdery mildew fungus, Uncinula necator, were detected in leaves of New York samples. In New York, the dsRNAs were not observed in leaves or stem samples collected from June through late August during the 1988 and 1989 growing seasons, suggesting that dsRNA detection in the grape tissue is variable throughout the season. We suggest that dsRNA species B and C are associated with rSP disease. The inconsistent results with New York samples are discussed.