966 resultados para Muscle stimulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees-105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees s(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 mu g ml(-1) saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min(-1). Saponin concentrations up to 150 mu g ml(-1) and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 mu g ml(-1) saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 mu g ml(-1) for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min(-1) in the presence of 150 mu g ml(-1) saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 mu M Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 mu m) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 mu g ml(-1) saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed for the first time the long-term maintenance of repetitive transcranial magnetic stimulation (rTMS)-induced analgesia in patients with chronic widespread pain due to fibromyalgia. Forty consecutive patients were randomly assigned, in a double-blind fashion, to 2 groups: one receiving active rTMS (n = 20) and the other, sham stimulation (n = 20), applied to the left primary motor cortex. The stimulation protocol consisted of 14 sessions: an ""induction phase"" of 5 daily sessions followed by a ""maintenance phase"" of 3 sessions a week apart, 3 sessions a fortnight apart, and 3 sessions a month apart. The primary outcome was average pain intensity over the last 24 hours, measured before each stimulation from day 1 to week 21 and at week 25 (1 month after the last stimulation). Other outcomes measured included quality of life, mood and anxiety, and several parameters of motor cortical excitability. Thirty patients completed the study (14 in the sham stimulation group and 16 in the active stimulation group). Active rTMS significantly reduced pain intensity from day 5 to week 25. These analgesic effects were associated with a long-term improvement in items related to quality of life (including fatigue, morning tiredness, general activity, walking, and sleep) and were directly correlated with changes in intracortical inhibition. In conclusion, these results suggest that TMS may be a valuable and safe new therapeutic option in patients with fibromyalgia. (C) 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of the pulsed ultrasound therapy (PUT) in stimulating myoregeneration and collagen deposition in an experimental model of lacerative gastrocnemius muscle lesion in 30 Wistar rats. Fifteen rats were treated (TG) daily with 1 MHz pulsed ultrasound (50%) at 0.57 W/cm(2) for 5 min, and 15 were control animals (CG). Muscle samples were analyzed on postoperative days 4, 7 and 14 through H&E, Picrosirius-polarization and immunohistochemistry for desmin. The lesions presented similar inflammatory responses in both treated and control groups. The areal fraction of fibrillar collagen was larger in the TG at 4 days post-operatively (17.53 +/- 6.2% vs 6.79 +/- 1.3%, p = 0.0491), 7 days (31.07 +/- 7.45% vs 12.57 +/- 3.6%, p = 0.0021) and 14 days (30.39 +/- 7.3% vs 19.13 +/- 3.51%, p = 0.0118); the areal fraction of myoblasts and myotubes was larger in the TG at 14 days after surgery (41.66 +/- 2.97% vs 34.83 +/- 3.08%, p = 0.025). Our data suggest that the PUT increases the differentiation of muscular lineage cells, what would favor tissue regeneration. On the other hand, it is also suggested that there is a larger deposition of collagenous fibers, what could mean worse functional performance. However, the percentage of fibers seems to have stabilized at day 7 in TG and kept increasing in CG. Furthermore, the collagen supramolecular organization achieved by the TG is also significant according to the Sirius red staining results. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our study aims to investigate changes in electrocortical activity by observing the variations in absolute theta power in the primary somatomotor and parietal regions of the brain under three different electrical stimulation conditions: control group (without stimulation), group 24 (24 trials of stimulation) and group 36 (36 trials of stimulation). Thus, our hypothesis is that the application of different patterns of electrical stimulation will promote different states of habituation in these regions. The sample was composed of 24 healthy (absence of mental and physical impairments) students (14 male and 10 female), with ages varying from 25 to 40 years old (32.5 +/- 7.5), who are right-handed (Edinburgh Inventory). The subjects were randomly distributed into three groups: control (n = 8), G24 (n = 8) and G36 (n = 8). We use the Functional electrical stimulation (FES) equipment (NeuroCompact-2462) to stimulate the right index finger extensor muscle, while the electroencephalographic signal was simultaneously recorded. We found an interaction between condition and block factors for the C3 and P3 electrode, a condition and block main effects for the C4 electrode, and a condition main effect for the P4 electrode. Our results support the hypothesis that electrical stimulation promotes neurophysiological changes. It appears that stimulus adaptation (accommodation) of specific circuits can strengthen the brain`s ability to distinguish between and respond to such stimuli over time. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To investigate the effects of chronic ethanol consumption on nitric oxide (NO)-mediated relaxation in rat cavernosal smooth muscle (CSM). METHODS Male wistar rats were divided into 2 groups: control and ethanol. CSM obtained from both groups were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hertz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (0.01-1000 mu mol L(-1)), sodium nitroprusside (SNP, 0.01-1000 mu mol L(-1)), or EFS (1-32 Hz) in strips precontracted with phenylephrine (10 mu mol L(-1)). Blood ethanol, serum testosterone levels, and basal nitrate generation were determined. Immunoexpression of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was also accessed. RESULTS Ethanol intake for 4 weeks significantly increased noradrenergic nerve-mediated contractions of CSM in response to EFS. The endothelium-dependent relaxation induced by acetylcholine decreased after the ethanol treatment. Ethanol consumption decreased serum testosterone levels but did not affect the nitrate levels on rat CSM. The mRNA and protein levels for eNOS and iNOS receptors were increased in CSM from ethanol-treated rats. CONCLUSIONS Ethanol consumption reduces endothelium-dependent relaxation induced by acetylcholine, but does not affect SNP or EFS-induced relaxation, suggesting that ethanol disrupts the endothelial function. Despite the overexpression of eNOS and iNOS in ethanol-treated rats, the impaired relaxation induced by acetylcholine may suggest that chronic ethanol consumption induces endothelial dysfunction. UROLOGY 74: 1250-1256, 2009. (C) 2009 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies in our laboratory have shown that the pleiotropic cytokine leukemia inhibitory factor (LIF) inhibits neointimal formation and the development and progression of atherosclerotic and restenotic lesions in a rabbit model of disease. The present study demonstrates an upregulation of both the LIF receptor (LIFR)-α subunit and the signal transducing subunit gp130 following endothelial denudation of the carotid artery by balloon catheter. Continuous infusion of LIF (30 μg/kg/day) resulted in the downregulation of LIFR-a in injured arteries in vivo. Similarly, smooth muscle cells in vitro treated with LIF exhibited a time-dependent reduction in LIFR-a protein expression and the subsequent reduction in transcription of the TIMP-1 gene. However, in the presence of an intact endothelium, LIFR-a was upregulated in response to LIF, and accordingly the downstream induction of iNOS expression was also increased. Thus, LIF exerts more potent antiatherogenic effects in the vasculature when the endothelium is intact.