941 resultados para Multiprocessor scheduling with resource sharing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with several proposals concerning multiprocessor systems and with the various possible methods of evaluating such proposals. After a discussion of the advantages and disadvantages of several performance evaluation tools, the author decides that simulation is the only tool powerful enough to develop a model which would be of practical use, in the design, comparison and extension of systems. The main aims of the simulation package developed as part of this study are cost effectiveness, ease of use and generality. The methodology on which the simulation package is based is described in detail. The fundamental principles are that model design should reflect actual systems design, that measuring procedures should be carried out alongside design that models should be well documented and easily adaptable and that models should be dynamic. The simulation package itself is modular, and in this way reflects current design trends. This approach also aids documentation and ensures that the model is easily adaptable. It contains a skeleton structure and a library of segments which can be added to or directly swapped with segments of the skeleton structure, to form a model which fits a user's requirements. The study also contains the results of some experimental work carried out using the model, the first part of which tests• the model's capabilities by simulating a large operating system, the ICL George 3 system; the second part deals with general questions and some of the many proposals concerning multiprocessor systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis seeks to analyse the performance of dynamic slice provisioning in a 5G metro network with the low latency and reliability guaranties. This elaborate highlight the comparison in terms of performance of two versions of a simulator developed in Python based on different models: the Exhaustive research model and Shortest Path First Fit (SPFF) model. It further presents the differences between the dedicated path protection and the shared path protection. This analysis is made through several simulations at different network conditions by varying networks resources and observing the network performances while comparing the 2 models mentioned above. A reconfiguration procedure was implemented on backup resources in the shortest path first fit in order to improve its performance with respect to the exhaustive research which is more optimised. Subsequently, several triggering events was implemented, for the reconfiguration. And a comparison is made between these different triggering events in terms blocking probability, bandwidth at link, capacity at each node, primary and backup bandwidth per slice and backup capacity per slice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms. During the execution of a multimode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not be jeopardized by the mode changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.