994 resultados para Multiprocessor computer architectures
Resumo:
We propose a data flow based run time system as an efficient tool for supporting execution of parallel code on heterogeneous architectures hosting both multicore CPUs and GPUs. We discuss how the proposed run time system may be the target of both structured parallel applications developed using algorithmic skeletons/parallel design patterns and also more "domain specific" programming models. Experimental results demonstrating the feasibility of the approach are presented. © 2012 World Scientific Publishing Company.
Resumo:
The emergence of programmable logic devices as processing platforms for digital signal processing applications poses challenges concerning rapid implementation and high level optimization of algorithms on these platforms. This paper describes Abhainn, a rapid implementation methodology and toolsuite for translating an algorithmic expression of the system to a working implementation on a heterogeneous multiprocessor/field programmable gate array platform, or a standalone system on programmable chip solution. Two particular focuses for Abhainn are the automated but configurable realisation of inter-processor communuication fabrics, and the establishment of novel dedicated hardware component design methodologies allowing algorithm level transformation for system optimization. This paper outlines the approaches employed in both these particular instances.
Resumo:
In real time digital signal processing, high performance modules for division and square root are essential if many powerful algorithms are to be implemented. In this paper, a new radix 2 algorithms for SRT division and square root are developed. For these new schemes, the result digits and the residuals are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance should exceed that of the radix 2 SRT methods. VLSI array architectures to implement the new division and square root schemes are also presented.
Resumo:
Optimized circuits for implementing high-performance bit-parallel IIR filters are presented. Circuits constructed mainly from simple carry save adders and based on most-significant-bit (MSB) first arithmetic are described. Two methods resulting in systems which are 100% efficient in that they are capable of sampling data every cycle are presented. In the first approach the basic circuit is modified so that the level of pipelining used is compatible with the small, but fixed, latency associated with the computation in question. This is achieved through insertion of pipeline delays (half latches) on every second row of cells. This produces an area-efficient solution in which the throughput rate is determined by a critical path of 76 gate delays. A second approach combines the MSB first arithmetic methods with the scattered look-ahead methods. Important design issues are addressed, including wordlength truncation, overflow detection, and saturation.
Resumo:
In this paper, we investigate the impact of faulty memory bit-cells on the performance of LDPC and Turbo channel decoders based on realistic memory failure models. Our study investigates the inherent error resilience of such codes to potential memory faults affecting the decoding process. We develop two mitigation mechanisms that reduce the impact of memory faults rather than correcting every single error. We show how protection of only few bit-cells is sufficient to deal with high defect rates. In addition, we show how the use of repair-iterations specifically helps mitigating the impact of faults that occur inside the decoder itself.
Resumo:
Rapid developments in microelectronics and computer science continue to fuel new opportunities for real-time control engineers. The ever-increasing system complexity and sophistication, environmental legislation, economic competition, safety and reliability constitute some of the driving forces for the research themes presented at the IFAC Workshop on Algorithms and Architectures for Real-Time Control (AARTC'2000). The Spanish Society for Automatic Control hosted AARTC'2000, which was held at Palma de Maiorca, Spain, from 15 to 17 May. This workshop was the sixth in the series.
Resumo:
Algorithm and Architectures for Real-Time Control Workshop had the objective to investigate the state of the art and to present new research and application results in software and hardware for real-timecontrol, as well as to bring together engeneers and computer scientists who are researchers, developers and practitioners, both from the academic and the industrial world.
Resumo:
Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
The evolution of the electrical grid into a smart grid, allowing user production, storage and exchange of energy, remote control of appliances, and in general optimizations over how the energy is managed and consumed, is also an evolution into a complex Information and Communication Technology (ICT) system. With the goal of promoting an integrated and interoperable smart grid, a number of organizations all over the world started uncoordinated standardization activities, which caused the emergence of a large number of incompatible architectures and standards. There are now new standardization activities which have the goal of organizing existing standards and produce best practices to choose the right approach(es) to be employed in specific smart grid designs. This paper follows the lead of NIST and ETSI/CEN/CENELEC approaches in trying to provide taxonomy of existing solutions; our contribution reviews and relates current ICT state-of-the-art, with the objective of forecasting future trends based on the orientation of current efforts and on relationships between them. The resulting taxonomy provides guidelines for further studies of the architectures, and highlights how the standards in the last mile of the smart grid are converging to common solutions to improve ICT infrastructure interoperability.
Resumo:
This thesis describes research in which genetic programming is used to automatically evolve shape grammars that construct three dimensional models of possible external building architectures. A completely automated fitness function is used, which evaluates the three dimensional building models according to different geometric properties such as surface normals, height, building footprint, and more. In order to evaluate the buildings on the different criteria, a multi-objective fitness function is used. The results obtained from the automated system were successful in satisfying the multiple objective criteria as well as creating interesting and unique designs that a human-aided system might not discover. In this study of evolutionary design, the architectures created are not meant to be fully functional and structurally sound blueprints for constructing a building, but are meant to be inspirational ideas for possible architectural designs. The evolved models are applicable for today's architectural industries as well as in the video game and movie industries. Many new avenues for future work have also been discovered and highlighted.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
The thesis focuses on efficient design methods and reconfiguration architectures suitable for higher performance wireless communication .The work presented in this thesis describes the development of compact,inexpensive and low power communication devices that are robust,testable and capable of handling multiple communication standards.A new multistandard Decimation Filter Design Toolbox is developed in MATLAB GUIDE environment.RNS based dual-mode decimation filters reconfigurable for WCDMA/WiMAX and WCDMA/WLANa standards are designed and implemented.It offers high speed operation with lesser area requirement and lower dynamic power dissipation.A novel sigma-delta based direct analog-to-residue converter that reduces the complexity of RNS conversion circuitry is presented.The performance of an OFDM communication system with a new RRNS-convolutional concatenated coding is analysed and improved BER performance is obtained under different channel conditions. Easily testable MAC units for filters are presented using Reed-Muller logic for realization.