803 resultados para Multiprocessor computer architectures
Resumo:
"UIUCDCS-R-75-717"
Resumo:
"UILU-ENG 77 1720."
Resumo:
"NSF-OCA-MCS76-81686-000030."
Resumo:
"UILU-ENG 78 1702."
Resumo:
Item 247.
Resumo:
We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.
Resumo:
An investigation is carried out into the design of a small local computer network for eventual implementation on the University of Aston campus. Microprocessors are investigated as a possible choice for use as a node controller for reasons of cost and reliability. Since the network will be local, high speed lines of megabit order are proposed. After an introduction to several well known networks, various aspects of networks are discussed including packet switching, functions of a node and host-node protocol. Chapter three develops the network philosophy with an introduction to microprocessors. Various organisations of microprocessors into multicomputer and multiprocessor systems are discussed, together with methods of achieving reliabls computing. Chapter four presents the simulation model and its implentation as a computer program. The major modelling effort is to study the behaviour of messages queueing for access to the network and the message delay experienced on the network. Use is made of spectral analysis to determine the sampling frequency while Sxponentially Weighted Noving Averages are used for data smoothing.
Resumo:
The problem of preparation of a program to perform it on multiprocessor system of a cluster type is considered. When developing programs for a cluster computer the technology based on use of the remote terminal is applied. The situation when such remote terminal is the computer with operational system Windows is considered. The set of the tool means, allowing carrying out of editing program texts, compiling and starting programs on a cluster computer, is suggested. Advantage of an offered way of preparation of programs to execution is that it allows as much as possible to use practical experience of programmers used to working in OS Windows environment.
Resumo:
Software architecture is the abstract design of a software system. It plays a key role as a bridge between requirements and implementation, and is a blueprint for development. The architecture represents a set of early design decisions that are crucial to a system. Mistakes in those decisions are very costly if they remain undetected until the system is implemented and deployed. This is where formal specification and analysis fits in. Formal specification makes sure that an architecture design is represented in a rigorous and unambiguous way. Furthermore, a formally specified model allows the use of different analysis techniques for verifying the correctness of those crucial design decisions. ^ This dissertation presented a framework, called SAM, for formal specification and analysis of software architectures. In terms of specification, formalisms and mechanisms were identified and chosen to specify software architecture based on different analysis needs. Formalisms for specifying properties were also explored, especially in the case of non-functional properties. In terms of analysis, the dissertation explored both the verification of functional properties and the evaluation of non-functional properties of software architecture. For the verification of functional property, methodologies were presented on how to apply existing model checking techniques on a SAM model. For the evaluation of non-functional properties, the dissertation first showed how to incorporate stochastic information into a SAM model, and then explained how to translate the model to existing tools and conducts the analysis using those tools. ^ To alleviate the analysis work, we also provided a tool to automatically translate a SAM model for model checking. All the techniques and methods described in the dissertation were illustrated by examples or case studies, which also served a purpose of advocating the use of formal methods in practice. ^
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the system’s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes five significant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identifies a locality richness which exists naturally in connected objects that contain a root object and its reachable set— ‘rooted sub-graphs’. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artificial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for configuring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-specific and configuring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks.
Resumo:
Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures.
Resumo:
To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.