898 resultados para Multiple subspace learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phasic activation of dopaminergic neurons is associated with reward-predicting cues and supports learning during behavioral adaptation. While noncontingent activation of dopaminergic neurons in the ventral tegmental are (VTA) is sufficient for passive behavioral conditioning, it remains unknown whether the phasic dopaminergic signal is truly reinforcing. In this study, we first targeted the expression of channelrhodopsin-2 to dopaminergic neurons of the VTA and optimized optogenetically evoked dopamine transients. Second, we showed that phasic activation of dopaminergic neurons in freely moving mice causally enhances positive reinforcing actions in a food-seeking operant task. Interestingly, such effect was not found in the absence of food reward. We further found that phasic activation of dopaminergic neurons is sufficient to reactivate previously extinguished food-seeking behavior in the absence of external cues. This was also confirmed using a single-session reversal paradigm. Collectively, these data suggest that activation of dopaminergic neurons facilitates the development of positive reinforcement during reward-seeking and behavioral flexibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a spatial filtering technique forthe reception of pilot-aided multirate multicode direct-sequencecode division multiple access (DS/CDMA) systems such as widebandCDMA (WCDMA). These systems introduce a code-multiplexedpilot sequence that can be used for the estimation of thefilter weights, but the presence of the traffic signal (transmittedat the same time as the pilot sequence) corrupts that estimationand degrades the performance of the filter significantly. This iscaused by the fact that although the traffic and pilot signals areusually designed to be orthogonal, the frequency selectivity of thechannel degrades this orthogonality at hte receiving end. Here,we propose a semi-blind technique that eliminates the self-noisecaused by the code-multiplexing of the pilot. We derive analyticallythe asymptotic performance of both the training-only andthe semi-blind techniques and compare them with the actual simulatedperformance. It is shown, both analytically and via simulation,that high gains can be achieved with respect to training-onlybasedtechniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with the phenomenon of learning between organizations in innovation networks that develop new products, services or processes. Inter organizational learning is studied especially at the level of the network. The role of the network can be seen as twofold: either the network is a context for inter organizational learning, if the learner is something else than the network (organization, group, individual), or the network itself is the learner. Innovations are regarded as a primary source of competitiveness and renewal in organizations. Networking has become increasingly common particularly because of the possibility to extend the resource base of the organization through partnerships and to concentrate on core competencies. Especially in innovation activities, networks provide the possibility to answer the complex needs of the customers faster and to share the costs and risks of the development work. Networked innovation activities are often organized in practice as distributed virtual teams, either within one organization or as cross organizational co operation. The role of technology is considered in the research mainly as an enabling tool for collaboration and learning. Learning has been recognized as one important collaborative process in networks or as a motivation for networking. It is even more important in the innovation context as an enabler of renewal, since the essence of the innovation process is creating new knowledge, processes, products and services. The thesis aims at providing enhanced understanding about the inter organizational learning phenomenon in and by innovation networks, especially concentrating on the network level. The perspectives used in the research are the theoretical viewpoints and concepts, challenges, and solutions for learning. The methods used in the study are literature reviews and empirical research carried out with semi structured interviews analyzed with qualitative content analysis. The empirical research concentrates on two different areas, firstly on the theoretical approaches to learning that are relevant to innovation networks, secondly on learning in virtual innovation teams. As a result, the research identifies insights and implications for learning in innovation networks from several viewpoints on organizational learning. Using multiple perspectives allows drawing a many sided picture of the learning phenomenon that is valuable because of the versatility and complexity of situations and challenges of learning in the context of innovation and networks. The research results also show some of the challenges of learning and possible solutions for supporting especially network level learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: E-learning techniques are spreading at great speed in medicine, raising concerns about the impact of adopting them. Websites especially designed to host courses are becoming more common. There is a lack of evidence that these systems could enhance student knowledge acquisition. GOAL: To evaluate the impact of using dedicated-website tools over cognition of medical students exposed to a first-aid course. METHODS: Prospective study of 184 medical students exposed to a twenty-hour first-aid course. We generated a dedicated-website with several sections (lectures, additional reading material, video and multiple choice exercises). We constructed variables expressing the student's access to each section. The evaluation was composed of fifty multiple-choice tests, based on clinical problems. We used multiple linear regression to adjust for potential confounders. RESULTS: There was no association of website intensity of exposure and the outcome - beta-coeficient 0.27 (95%CI - 0.454 - 1.004). These findings were not altered after adjustment for potential confounders - 0.165 (95%CI -0.628 - 0.960). CONCLUSION: A dedicated website with passive and active capabilities for aiding in person learning had not shown association with a better outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation seeks to explore how to improve users‘ adoption of mobile learning in current education systems. Considering the difference between basic and tertiary education in China, the research consists of two separate but interrelated parts, which focus on the use of mobile learning in basic and tertiary education contexts, respectively. In the dissertation, two adoption frameworks are developed based on previous studies. The frameworks are then evaluated using different technologies. Concerning mobile learning use in basic education settings, case study methodology is utilized. A leading provider of mobile learning services and products in China, Noah Ltd., is investigated. Multiple sources of evidence are collected to test the framework. Regarding mobile learning adoption in tertiary education contexts, survey research methodology is utilized. Based on 209 useful responses, the framework is evaluated using structural equation modelling technology. Four proposed determinants of intention to use are evaluated, which are perceived ease of use, perceived near-term usefulness, perceived ong-term usefulness and personal innovativeness. The dissertation provides a number of new insights for both researchers and practitioners. In particular, the dissertation specifies a practical solution to deal with the disruptive effects of mobile learning in basic education, which keeps the use of mobile learning away from the schools across such as European countries. A list of new and innovative mobile learning technologies is systematically introduced as well. Further, the research identifies several key factors driving mobile learning adoption in tertiary education settings. In theory, the dissertation suggests that since the technology acceptance model is initiated in work-oriented innovations by testing employees, it is not necessarily the best model for studying educational innovations. The results also suggest that perceived longterm usefulness for educational systems should be as important as perceived usefulness for utilitarian systems, and perceived enjoyment for hedonic systems. A classification based on the nature of systems purpose (utilitarian, hedonic or educational) would contribute to a better understanding of the essence of IT innovation adoption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted in order to learn how companies’ revenue models will be transformed due to the digitalisation of its products and processes. Because there is still only a limited number of researches focusing solely on revenue models, and particularly on the revenue model change caused by the changes at the business environment, the topic was initially approached through the business model concept, which organises the different value creating operations and resources at a company in order to create profitable revenue streams. This was used as the base for constructing the theoretical framework for this study, used to collect and analyse the information. The empirical section is based on a qualitative study approach and multiple-case analysis of companies operating in learning materials publishing industry. Their operations are compared with companies operating in other industries, which have undergone comparable transformation, in order to recognise either similarities or contrasts between the cases. The sources of evidence are a literature review to find the essential dimensions researched earlier, and interviews 29 of managers and executives at 17 organisations representing six industries. Based onto the earlier literature and the empirical findings of this study, the change of the revenue model is linked with the change of the other dimen-sions of the business model. When one dimension will be altered, as well the other should be adjusted accordingly. At the case companies the transformation is observed as the utilisation of several revenue models simultaneously and the revenue creation processes becoming more complex.