977 resultados para Multilevel models
Resumo:
Background Poor mental health is a significant cause of morbidity and mortality, yet debate continues about factors most likely to predict poor mental health outcomes. Objective This cohort study examines the influence of modifiable lifestyle factors, menopausal symptoms, and physical health on the mental health of midlife and older Australian women. Methods: Random sampling was used to recruit women aged 40-55, from rural and urban areas of Queensland, Australia. Overall, 340 women completed mailed surveys on socio-demographic characteristics, midlife symptoms (Greene Climacteric Scale©), modifiable lifestyle factors, and mental health (SF-12©) in 2001, 2004 and 2011. Hierarchical repeated-measure models were used to explore the correlates of poor mental health over time. Results The mean age [SD] at baseline was 55 [2.7] years, most were married (73%, n=248) and 18% were pre-menopausal. The model suggested that variance in mental health widened and showed a non-linear increase with age. Decrements in mental health were associated with an increase in midlife symptoms (Greene psychological scale, P <0.01; Greene somatic scale, P <0.05), time (P <0.01), poor physical health (P <0.01) and individual variance (P <0.01). Socio-demographics and lifestyle factors had little influence on mental health over time. Conclusion Findings suggest that while women’s mental health may decline during midlife, the effect is temporary; in older women, physical health and individual factors seem to be increasingly significant. This research highlights the importance of active health promotion as a means of enhancing both physical and mental health in midlife women.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
The purpose of this article is to examine the factors associated with women's mental health. A random sample of 340 Australian women aged 40–55 completed surveys on menopausal and lifestyle factors and mental health at three time points. We used hierarchical models to show that decrements in mental health were associated with a corresponding increase in some midlife symptoms (p < .01), time (p < .01), and poor physical health (p < .01), but the effect was not permanent. In older women, mental health was associated with physical functioning, climacteric symptoms, and time, while individual variations in mental health score were largely explained by lifestyle factors.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for distributing unstructured meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut edge weight in the graph with the aim of minimising the parallel communication overhead, but recently there has been a perceived need to take into account the communications network of the parallel machine. For example the increasing use of SMP clusters (systems of multiprocessor compute nodes with very fast intra-node communications but relatively slow inter-node networks) suggest the use of hierarchical network models. Indeed this requirement is exacerbated in the early experiments with meta-computers (multiple supercomputers combined together, in extreme cases over inter-continental networks). In this paper therefore, we modify a multilevel algorithm in order to minimise a cost function based on a model of the communications network. Several network models and variants of the algorithm are tested and we establish that it is possible to successfully guide the optimisation to reflect the chosen architecture.
Resumo:
The development of cultural policy analysis by social science has been produced a theorization about cultural policy models from sociology and political science. This analysis shows the influence of the national model of cultural policy on the forms of governance and management of cultural facilities. However, in this paper we will defend that currently the local model of cultural policy decisively influences the model of cultural institutions. This is explained by the growing importance of culture in local development strategies. In order to demonstrate this we will analyze the case of the Barcelona Model of local development and cultural policy, that is characterized for the level of local government leadership, multilevel governance, the use of culture in urban planning processes and a tendency to use public-private partnership in public management. This Model influences the genesis and development of the cultural facilities and it produces a singular and relatively successful model.
Resumo:
Concern with what can explain variation in generalized social trust has led to an abundance of theoretical models. Defining generalized social trust as a belief in human benevolence, we focus on the emancipation theory and social capital theory as well as the ethnic diversity and economic development models of trust. We then determine which dimensions of individuals’ behavior and attitudes as well as of their national context are the most important predictors. Using data from 20 countries that participated in round one of the European Social Survey, we test these models at their respective level of analysis, individual and/or national. Our analysis revealed that individuals’ own trust in the political system as a moral and competent institution was the most important predictor of generalized social trust at the individual level, while a country’s level of affluence was the most important contextual predictor, indicating that different dimensions are significant at the two levels of analysis. This analysis also raised further questions as to the meaning of social capital at the two levels of analysis and the conceptual equivalence of its civic engagement dimension across cultures.
Resumo:
I have designed and implemented a system for the multilevel verification of synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the schematic of an MOS circuit and a specification of the circuit's intended digital behavior. Silica Pithecus determines if the circuit meets its specification. If the circuit fails to meet its specification Silica Pithecus returns to the designer the reason for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors) as unidirectional digital devices, Silica Pithecus models primitives more realistically. Transistors are modelled as bidirectional devices of varying resistances, and nodes are modelled as capacitors. Silica Pithecus operates hierarchically, interactively, and incrementally. Major contributions of this research include a formal understanding of the relationship between different behavioral descriptions (e.g., signal, boolean, and arithmetic descriptions) of the same device, and a formalization of the relationship between the structure, behavior, and context of device. Given these formal structures my methods find sufficient conditions on the inputs of circuits which guarantee the correct operation of the circuit in the desired descriptive domain. These methods are algorithmic and complete. They also handle complex phenomena such as races and charge sharing. Informal notions such as races and hazards are shown to be derivable from the correctness conditions used by my methods.
Resumo:
In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.
Resumo:
The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
Hierarchically clustered populations are often encountered in public health research, but the traditional methods used in analyzing this type of data are not always adequate. In the case of survival time data, more appropriate methods have only begun to surface in the last couple of decades. Such methods include multilevel statistical techniques which, although more complicated to implement than traditional methods, are more appropriate. ^ One population that is known to exhibit a hierarchical structure is that of patients who utilize the health care system of the Department of Veterans Affairs where patients are grouped not only by hospital, but also by geographic network (VISN). This project analyzes survival time data sets housed at the Houston Veterans Affairs Medical Center Research Department using two different Cox Proportional Hazards regression models, a traditional model and a multilevel model. VISNs that exhibit significantly higher or lower survival rates than the rest are identified separately for each model. ^ In this particular case, although there are differences in the results of the two models, it is not enough to warrant using the more complex multilevel technique. This is shown by the small estimates of variance associated with levels two and three in the multilevel Cox analysis. Much of the differences that are exhibited in identification of VISNs with high or low survival rates is attributable to computer hardware difficulties rather than to any significant improvements in the model. ^
Resumo:
Background. The gap between actual and ideal rates of routine cancer screening in the U.S., particularly for colorectal cancer screening (CRCS) (1;2), is responsible for an unnecessary burden of morbidity and mortality, particularly for disadvantaged groups. Knowledge about the effects of individual and area influences is being advanced by a growing body of research that has examined the association of area socioeconomic status (SES) and cancer screening after controlling for individual SES. The findings from this emerging and heterogeneous research in the cancer screening literature have been mixed. Moreover, multilevel studies in this area have not yet adequately explored the possibility of differential associations by population subgroup, despite some evidence suggesting gender-specific effects. ^ Objectives and methods. This dissertation reports on a systematic review of studies on the association of area SES and cancer screening and a multilevel study of the association between area SES and CRCS. The specific aims of the systematic review are to: (1) describe the study designs, constructs, methods, and measures; (2) describe the association of area SES and cancer screening; and (3) identify neglected areas of research. ^ The empiric study linked a pooled sample of respondents aged ≥50 years without a personal history of colorectal cancer from the 2003 and 2005 California Health Interview Surveys with a comprehensive set of census-tract level area SES measures from the 2000 U.S. Census. Two-level random intercept models were used to test 2 hypotheses: (1) area SES will be associated with adherence to two modalities of CRCS after controlling for individual SES; and (2) gender will moderate the relationship between area socioeconomic status and adherence to both modalities of CRCS. ^ Results. The systematic review identified 19 eligible studies that demonstrated variability in study designs, methods, constructs, and measures. The majority of tested associations were either not statistically significant or significant and in the positive direction, indicating that as area SES increased, the odds of CRCS increased. The multilevel study demonstrated that while multiple aspects of area SES were associated with CRCS after controlling for individual SES, associations differed by screening modality and in the case of endoscopy, they also differed by gender. ^ Conclusions. Conceptual and methodologic heterogeneity and weaknesses in the literature to date limit definitive conclusions about the underlying relationships between area SES and cancer screening. The multilevel study provided partial support for both hypotheses. Future research should continue to explore the role of gender as a moderating influence with the aim of identifying the mechanisms linking area SES and cancer prevention behaviors. ^