999 resultados para Mountain life
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source. In the initial software, no attempt was made to choose between the results offered or construct a case for retention in the casebase. In this phase of the project, alternative data mining techniques will be explored and evaluated. A process for selecting a unique service life prediction for each query will also be investigated. This report summarises the initial evaluation of several data mining techniques.
Resumo:
The project has further developed two programs for the industry partners related to service life prediction and salt deposition. The program for Queensland Department of Main Roads which predicts salt deposition on different bridge structures at any point in Queensland has been further refined by looking at more variables. It was found that the height of the bridge significantly affects the salt deposition levels only when very close to the coast. However the effect of natural cleaning of salt by rainfall was incorporated into the program. The user interface allows selection of a location in Queensland, followed by a bridge component. The program then predicts the annual salt deposition rate and rates the likely severity of the environment. The service life prediction program for the Queensland Department of Public Works has been expanded to include 10 common building components, in a variety of environments. Data mining procedures have been used to develop the program and increase the usefulness of the application. A Query Based Learning System (QBLS) has been developed which is based on a data-centric model with extensions to provide support for user interaction. The program is based on number of sources of information about the service life of building components. These include the Delphi survey, the CSIRO Holistic model and a school survey. During the project, the Holistic model was modified for each building component and databases generated for the locations of all Queensland schools. Experiments were carried out to verify and provide parameters for the modelling. These included instrumentation of a downpipe, measurements on pH and chloride levels in leaf litter, EIS measurements and chromate leaching from Colorbond materials and dose tests to measure corrosion rates of new materials. A further database was also generated for inclusion in the program through a large school survey. Over 30 schools in a range of environments from tropical coastal to temperate inland were visited and the condition of the building components rated on a scale of 0-5. The data was analysed and used to calculate an average service life for each component/material combination in the environments, where sufficient examples were available.
Resumo:
Much recent research into citizen journalism has focussed on its role in political debate and deliberation. Such research examines important questions about citizen participation in democratic processes – however, it perhaps places undue focus on only one area of journalistic coverage, and presents a challenge which only a small number of citizen journalism projects can realistically hope to meet. A greater opportunity for broad-based citizen involvement in journalistic activities may lie outside of politics, in the coverage of everyday community life. A leading exponent of this approach is the German-based citizen journalism Website myHeimat.de, which provides a nationwide platform for participants to contribute reports about events in their community. myHeimat takes a hyperlocal approach but also allows for content aggregation on specific topics across multiple local communities; Hannover-based newspaper publishing house Madsack has recently acquired a stake in the project. Drawing on extensive interviews with myHeimat CEO Martin Huber and Madsack newspaper editors Peter Taubald and Clemens Wlokas during October 2008, this paper analyses the myHeimat project and examines its applicability beyond rural and regional areas in Germany; it investigates the question of what role citizen journalism may play beyond the political realm.
Resumo:
n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented
Resumo:
A need for an efficient life care management of building portfolio is becoming increasingly due to increase in aging building infrastructure globally. Appropriate structural engineering practices along with facility management can assist in optimising the remaining life cycle costs for existing public building portfolio. A more precise decision to either demolish, refurbish, do nothing or rebuilt option for any typical building under investigation is needed. In order to achieve this, the status of health of the building needs to be assessed considering several aspects including economic and supply-demand considerations. An investment decision for a refurbishment project competing with other capital works and/or refurbishment projects can be supported by emerging methodology residual service life assessment. This paper discusses challenges in refurbishment projects of public buildings and with a view towards development of residual service life assessment methodology
Resumo:
This paper describes the process adopted in developing an integrated decision support framework for planning of office building refurbishment projects, with specific emphasize on optimising rentable floor space, structural strengthening, residual life and sustainability. Expert opinion on the issues to be considered in a tool is being captured through the DELPHI process, which is currently ongoing. The methodology for development of the integrated tool will be validated through decisions taken during a case study project: refurbishment of CH1 building of Melbourne City Council, which will be followed through to completion by the research team. Current status of the CH1 planning will be presented in the context of the research project.
Resumo:
The endeavour to obtain estimates of durability of components for use in lifecycle assessment or costing and infrastructure and maintenance planning systems is large. The factor method and the reference service life concept provide a very valuable structure, but do not resolve the central dilemma of the need to derive an extensive database of service life. Traditional methods of estimating service life, such as dose functions or degradation models, can play a role in developing this database, however the scale of the problem clearly indicates that individual dose functions cannot be derived for each component in each different local and geographic setting. Thus, a wider range of techniques is required in order to devise reference service life. This paper outlines the approaches being taken in the Cooperative Research Centre for Construction Innovation project to predict reference service life. Approaches include the development of fundamental degradation and microclimate models, the development of a situation-based reasoning ‘engine’ to vary the ‘estimator’ of service life, and the development of a database on expert performance (Delphi study). These methods should be viewed as complementary rather than as discrete alternatives. As discussed in the paper, the situation-based reasoning approach in fact has the possibility of encompassing all other methods.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.
Resumo:
Perspectives on work-life balance (WLB) reflected in political, media and organisational discourse, would maintain that WLB is on the agenda because of broad social, economic and political factors (Fleetwood 2007). In contrast, critical scholarship which examines work-life balance (WLB) and its associated practices maintains that workplace flexibility is more than a quasi-functionalist response to contemporary problems faced by individuals, families or organisations. For example, the literature identifies where flexible work arrangements have not lived up to expectations of a panacea for work-home conflicts, being characterised as much by employer-driven working conditions that disadvantage workers and constrain balance, as they are by employee friendly practices that enable it (Charlesworth 1997). Further, even where generous organisational work-life balance policies exist, under-utilisation is an issue (Schaefer et al, 2007). Compounding these issues is that many employees perceive their paid work as becoming more intense, pressured and demanding (Townsend et al 2003).