640 resultados para Motorway Crashes
Resumo:
Ramp signalling is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, ramp signalling algorithms fall into two categories: local control and coordinated control by their effective scope. Coordinated ramp signalling strategies make use of measurements from the entire motorway network to operate individual ramp signals for the optimal performances at the network level. This study proposes a multi-hierarchical strategy for coordinated ramp signalling. The strategy is structured in two layers. At the higher layer with a longer update interval, coordination group is assembled and disassembled based on the location of high-risk breakdown flow. At the lower layer with a shorter update interval, individual ramps are hired to serve the coordination and are also released based on the prevailing congestion level on the ramp. This strategy is modelled and applied to the northbound Pacific Motorway micro-simulation platform (AIMSUN). The simulation results show an effective congestion mitigation of the proposed strategy.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
We examine the impact of aviation disasters on the stock prices of the crash airlines and their rival airlines. Results show that the crash airlines experience deeper negative abnormal returns as the degree of fatality increases. The stock prices of the rival airlines also suffer in large-scale disasters but benefit from the disasters when the fatality is minor.
Resumo:
Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.
Resumo:
This study reports on the utilisation of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours of a large sample of Australian fleet drivers (N = 3414). Surveys were completed by employees before they commenced a one day safety workshop intervention. Factor analysis techniques identified a three factor solution similar to previous research, which was comprised of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Two items traditionally related with highway-code violations were found to be associated with aggressive driving behaviours among the current sample. Multivariate analyses revealed that exposure to the road, errors and self-reported offences predicted crashes at work in the last 12 months, while gender, highway violations and crashes predicted offences incurred while at work. Importantly, those who received more fines at work were at an increased risk of crashing the work vehicle. However, overall, the DBQ demonstrated limited efficacy at predicting these two outcomes. This paper outlines the major findings of the study in regards to identifying and predicting aberrant driving behaviours and also highlights implications regarding the future utilisation of the DBQ within fleet settings.
Resumo:
Young drivers are the group of drivers most likely to crash. There are a number of factors that contribute to the high crash risk experienced by these drivers. While some of these factors are intrinsic to the young driver, such as their age, gender or driving skill, others relate to social factors and when and how often they drive. This article reviews the factors that affect the risk of young drivers crashing to enable a fuller understanding of why this risk is so high in order to assist in developing effective countermeasures.
Resumo:
Work zone safety studies have traditionally relied on historical crash records—an approach which is reactive in nature as it requires crashes to accumulate first before taking any preventive actions. However, detailed and accurate data on work zone crashes are often not available, as is the case for Australian road work zones. The lack of reliable safety records and the reactive nature of the crash-based safety analysis approach motivated this research to seek alternative and proactive measures of safety. Various surrogate measures of safety have been developed in the traffic safety literature including time to collision, time to accident, gap time, post encroachment time, required deceleration rate, proportion of stopping distances, lateral distance to departure, and time to departure. These measures express how close road-user(s) are from a potential crash by analysing their movement trajectories. A review of this fast-growing literature is presented in this paper from the viewpoint of applying the measures to untangle work zone safety issues. The review revealed that the use of the surrogate measures is very limited for analysing work zone safety, although numerous studies have used these measures for analysing safety in other parts of the road network, such as intersections and motorway ramps. There exist great opportunities for adopting this proactive safety assessment approach to transform work zone safety for both roadworkers and motorists.
Resumo:
The Driver Behaviour Questionnaire (DBQ) continues to be the most widely utilised self-report scale globally to assess crash risk and aberrant driving behaviours among motorists. However, the scale also attracts criticism regarding its perceived limited ability to accurately identify those most at risk of crash involvement. This study reports on the utilisation of the DBQ to examine the self-reported driving behaviours (and crash outcomes) of drivers in three separate Australian fleet samples (N = 443, N = 3414, & N = 4792), and whether combining the samples increases the tool’s predictive ability. Either on-line or paper versions of the questionnaire were completed by fleet employees in three organisations. Factor analytic techniques identified either three or four factor solutions (in each of the separate studies) and the combined sample produced expected factors of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Highway code violations (and mean scores) were comparable across the studies. However, across the three samples, multivariate analyses revealed that exposure to the road was the best predictor of crash involvement at work, rather than DBQ constructs. Furthermore, combining the scores to produce a sample of 8649 drivers did not improve the predictive ability of the tool for identifying crashes (e.g., 0.4% correctly identified) or for demerit point loss (0.3%). The paper outlines the major findings of this comparative sample study in regards to utilising self-report measurement tools to identify “at risk” drivers as well as the application of such data to future research endeavours.
Resumo:
Pedestrian crashes are one of the major road safety problems in developing countries representing about 40% of total fatal crashes in low income countries. Despite the fact that many pedestrian crashes in these countries occur at unsignalized intersections such as roundabouts, studies focussing on this issue are limited—thus representing a critical research gap. The objective of this study is to develop safety performance functions for pedestrian crashes at modern roundabouts to identify significant roadway geometric, traffic and land use characteristics related to pedestrian safety. To establish the relationship between pedestrian crashes and various causal factors, detailed data including various forms of exposure, geometric and traffic characteristics, and spatial factors such as proximity to schools and proximity to drinking establishments were collected from a sample of 22 modern roundabouts in Addis Ababa, Ethiopia, representing about 56% of such roundabouts in Addis Ababa. To account for spatial correlation resulting from multiple observations at a roundabout, both the random effect Poisson (REP) and random effect Negative Binomial (RENB) regression models were estimated and compared. Model goodness of fit statistics reveal a marginally superior fit of the REP model compared to the RENB model of pedestrian crashes at roundabouts. Pedestrian crossing volume and the product of traffic volumes along major and minor road had significant and positive associations with pedestrian crashes at roundabouts. The presence of a public transport (bus/taxi) terminal beside a roundabout is associated with increased pedestrian crashes. While the maximum gradient of an approach road is negatively associated with pedestrian safety, the provision of a raised median along an approach appears to increase pedestrian safety at roundabouts. Remedial measures are identified for combating pedestrian safety problems at roundabouts in the context of a developing country.
Resumo:
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.
Resumo:
It has been well established nationally and internationally that fatigue-related driving is an important contributory factor in fatal and serious injury crashes. The purpose of this report was to survey a large, representative sample of residents living in both the NSW and ACT to ask about their experience of fatigue and their involvement in fatigue-related crashes and incidents. This will provide valuable data about the number and characteristics of fatigue-related crashes and incidents of ACT residents. Specifically this study assessed the prevalence of incidents of fatigue-related driving for residents of NSW and the ACT, the characteristics surrounding the incident, if the report would fit within the NSW, QLD, or ATSB proxy definition or if it would fall outside of the proxy definition...
Resumo:
Executive Summary: Completion of the Veloway 1 (V1) will provide a dedicated and safe route for cyclists between the Brisbane CBD and the Gateway Motorway off-ramp at Eight Mile Plains alongside the South East Motorway. The V1 is being delivered in stages and when completed will provide a dedicated 3m wide cycleway 17km in length. Two stages (D and E) remain to be constructed to complete the V1. Major trip attractors along the V1 include the Mater, Princes Alexandra and Greenslopes Hospitals, two campuses of Griffith University, Garden City shopping centre and the Australian Tax Office. This report assesses the available evidence on the impacts on cycling behaviour of the recently completed V1 Stage C. The data sources informing this review include three intercept surveys, motion activated traffic cameras and travel time surveys on the V1 and adjoining South East Freeway Bikeway (SEFB), Strava app data, and cyclist crash data along Logan Road. The key findings from the evidence are that the completed V1 Stage C has: a Attracted cyclists from Holland Park, Holland Park West, Mt Gravatt and southern parts of Tarragindi onto the V1 Stage C. b Reduced the crash exposure of pedestrians to cyclists by attracting higher speed cyclists off the adjoining SEFB onto the cycling dedicated V1 Stage C. c Reduced the potential crash exposure of cyclists to motor vehicles by attracting cyclists off Logan Road on to the V1. d Provided travel time benefits to cyclists and reduced road crossings (eight down to two). e Predominantly attracted adults commuting alone to and from work and university. The evidence shows that the two traffic crossings across Birdwood Road (required as a temporary measure until the V1 is completed) negate much of the travel time gains of the V1 Stage C compared to the adjoining SEFB for southbound cyclists. Many cyclists accessing the V1 Stage C from the south are cycling in high-volume vehicular traffic lanes to reduce their travel time along Birdwood Road, but in the process are increasing their exposure to crashes with motor vehicles. Based on these findings this report recommends that TMR: a. Continue with plans to complete the V1 Veloway b. Undertake an engineering feasibility assessment to determine the viability of constructing a section of the V1 Stage E from the intersection Weller and Birdwood Roads over Marshall Road and along Bapaume Road on the western side of the Motorway to the intersection of Bapaume and Sterculia Roads. c. In the interim, improve signage and Birdwood Road crossing points for cyclists accessing and egressing the southern end of the V1 Stage C. d. Work with Brisbane City Council to identify the safest and most practical bicycle facilities to facilitate cycle travel between Logan Road and the V1 south of Birdwood Road. e. Improve the awareness of the V1 Stage C through signage for cyclists approaching from the north with the aim of providing a better understanding of the route of the V1 to the south. f. Refine the use of motion activated traffic cameras to improve the capture rate of useable images and obtain an ongoing collection over time of V1 usage data. g. Undertake discussions with Strava, Inc. to refine the presentation of Strava data to improve visual understanding of maps showing before and after cycle route volumes along and on roads leading to the V1.