864 resultados para Motion compensated frame interpolation
Resumo:
Tide gauge (TG) data along the northern Mediterranean and Black Sea coasts are compared to the sea-surface height (SSH) anomaly obtained from ocean altimetry (TOPEX/Poseidon and ERS-1/2) for a period of nine years (1993–2001). The TG measures the SSH relative to the ground whereas the altimetry does so with respect to the geocentric reference frame; therefore their difference would be in principle a vertical ground motion of the TG sites, though there are different error sources for this estimate as is discussed in the paper. In this study we estimate such vertical ground motion, for each TG site, from the slope of the SSH time series of the (non-seasonal) difference between the TG record and the altimetry measurement at a point closest to the TG. Where possible, these estimates are further compared with those derived from nearby continuous Global Positioning System (GPS) data series. These results on vertical ground motion along the Mediterranean and Black Sea coasts provide useful source data for studying, contrasting, and constraining tectonic models of the region. For example, in the eastern coast of the Adriatic Sea and in the western coast of Greece, a general subsidence is observed which may be related to the Adriatic lithosphere subducting beneath the Eurasian plate along the Dinarides fault.
Resumo:
An interoperable web processing service (WPS) for the automatic interpolation of environmental data has been developed in the frame of the INTAMAP project. In order to assess the performance of the interpolation method implemented, a validation WPS has also been developed. This validation WPS can be used to perform leave one out and K-fold cross validation: a full dataset is submitted and a range of validation statistics and diagnostic plots (e.g. histograms, variogram of residuals, mean errors) is received in return. This paper presents the architecture of the validation WPS and a case study is used to briefly illustrate its use in practice. We conclude with a discussion on the current limitations of the system and make proposals for further developments.
Resumo:
The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^
Resumo:
The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.
Resumo:
Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
Acupuncture stimulates points on the body, influencing the perception of myofascial pain or altering physiologic functions. The aim was to evaluate the effect of electroacupuncture (EAC) and acupuncture (AC) for myofascial pain of the upper trapezius and cervical range of motion, using SHAM acupuncture as control. Sixty women presenting at least one trigger point at the upper trapezius and local or referred pain for more than six months were randomized into EAC, AC, and SHAM groups. Eight sessions were scheduled and a follow-up was conducted after 28 days. The Visual Analog Scale assessed the intensity of local and general pain. A fleximeter assessed cervical movements. Data were analyzed using paired t or Wilcoxon's tests, ANOVA or Friedman or Kruskal-Wallis tests and Pearson's correlation (α=0.05). There was reduction in general pain in the EAC and AC groups after eight sessions (P<0.001). A significant decrease in pain intensity occurred for the right trapezius in all groups and for the left trapezius in the EAC and AC groups. Intergroup comparisons showed improvement in general pain in the EAC and AC groups and in local pain intensity in the EAC group (P<0.05), which showed an increase in left rotation (P=0.049). The AC group showed increases in inclination (P=0.005) sustained until follow-up and rotation to the right (P=0.032). EAC and AC were effective in reducing the pain intensity compared with SHAM. EAC was better than AC for local pain relief. These treatments can assist in increasing cervical range of motion, albeit subtly.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The structural engineering community in Brazil faces new challenges with the recent occurrence of high intensity tornados. Satellite surveillance data shows that the area covering the south-east of Brazil, Uruguay and some of Argentina is one of the world most tornado-prone areas, second only to the infamous tornado alley in central United States. The design of structures subject to tornado winds is a typical example of decision making in the presence of uncertainty. Structural design involves finding a good balance between the competing goals of safety and economy. This paper presents a methodology to find the optimum balance between these goals in the presence of uncertainty. In this paper, reliability-based risk optimization is used to find the optimal safety coefficient that minimizes the total expected cost of a steel frame communications tower, subject to extreme storm and tornado wind loads. The technique is not new, but it is applied to a practical problem of increasing interest to Brazilian structural engineers. The problem is formulated in the partial safety factor format used in current design codes, with all additional partial factor introduced to serve as optimization variable. The expected cost of failure (or risk) is defined as the product of a. limit state exceedance probability by a limit state exceedance cost. These costs include costs of repairing, rebuilding, and paying compensation for injury and loss of life. The total expected failure cost is the sum of individual expected costs over all failure modes. The steel frame communications, tower subject of this study has become very common in Brazil due to increasing mobile phone coverage. The study shows that optimum reliability is strongly dependent on the cost (or consequences) of failure. Since failure consequences depend oil actual tower location, it turn,,; out that different optimum designs should be used in different locations. Failure consequences are also different for the different parties involved in the design, construction and operation of the tower. Hence, it is important that risk is well understood by the parties involved, so that proper contracts call be made. The investigation shows that when non-structural terms dominate design costs (e.g, in residential or office buildings) it is not too costly to over-design; this observation is in agreement with the observed practice for non-optimized structural systems. In this situation, is much easier to loose money by under-design. When by under-design. When structural material cost is a significant part of design cost (e.g. concrete dam or bridge), one is likely to lose significantmoney by over-design. In this situation, a cost-risk-benefit optimization analysis is highly recommended. Finally, the study also shows that under time-varying loads like tornados, the optimum reliability is strongly dependent on the selected design life.
Resumo:
A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.
SSSPM J1102-3431 brown dwarf characterization from accurate proper motion and trigonometric parallax
Resumo:
Context. In 2005, Scholz and collaborators discovered, in a proper motion survey, a young brown dwarf SSSPM J1102-3431 (SSSPM J1102) of spectral type M8.5, probable member of the TW Hydrae Association and possible companion of the T Tauri star TWHya. The physical characterization of SSSPM J1102 was based on the hypothesis that it forms a binary system with TWHya. The recent discovery of a probable giant planet with a very short-period inside the TW Hya protoplanetary disk, as well as a disk around SSSPM J1102, make it especially interesting and important to measure well the physical parameters of SSSPM J1102. Aims. Trigonometric parallax and proper motion measurements of SSSPM J1102 are necessary to test for TWA membership and, thus, to determine the mass and age of this young brown dwarf and the possibility that it forms a wide binary system with TW Hya. Methods. Two years of regular observations at the ESO NTT/SUSI2 telescope have enabled us to determine the trigonometric parallax and proper motion of SSSPM J1102. Results. With our accurate distance determination of 55.2(-1.4)(+1.6) pc and proper motions of (-67.2, -14.0) +/- 0.6 mas/yr, we could confirm SSSPM J1102 as a very probable member of TWA. Assuming the TW Hydrae association age of 5-10 Myr, the evolutionary models compared to the photometry of this young brown dwarf indicate a mass of M = 25 +/- 5 M(Jup) and an effective temperature T(eff) = 2550 +/- 100 K. Conclusions. Our parallax and proper motion determination allow us to precisely describe the physical properties of this low mass object and to confirm its TWA membership. Our results indicate that SSSPMJ1102 may be a very wide separation companion of the star TW Hya.
Resumo:
Mixed martial arts (MMA) have become a fast-growing worldwide expansion of martial arts competition, requiring high level of skill, physical conditioning, and strategy, and involving a synthesis of combat while standing or on the ground. This study quantified the effort-pause ratio (EP), and classified effort segments of stand-up or groundwork development to identify the number of actions performed per round in MMA matches. 52 MMA athletes participated in the study (M age = 24 yr., SD = 5; average experience in MMA = 5 yr., SD = 3). A one-way analysis of variance with repeated measurements was conducted to compare the type of action across the rounds. A chi-squared test was applied across the percentages to compare proportions of different events. Only one significant difference (p < .05) was observed among rounds: time in groundwork of low intensity was longer in the second compared to the third round. When the interval between rounds was not considered, the EP ratio (between high-intensity effort to low-intensity effort plus pauses) WE S 1:2 to 1:4. This ratio is between ratios typical for judo, wrestling, karate, and taekwondo and reflects the combination of ground and standup techniques. Most of the matches ended in the third round, involving high-intensity actions, predominantly executed during groundwork combat.