954 resultados para Morphology of crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled structures capable of mediating electron transfer are an attractive scientific and technological goal. Therefore, systematic variants of SH3-Cytochrome b(562) fusion proteins were designed to make amyloid fibers displaying heme-b(562) electron transfer complexes. TEM and AFM data show that fiber morphology responds systematically to placement of b(562) within the fusion proteins. UV-vis spectroscopy shows that, for the fusion proteins under test, only half the fiber-borne b(562) binds heme with high affinity. Cofactor binding also improves the AFM imaging properties and changes the fiber morphology through changes in cytochrome conformation. Systematic observations and measurements of fiber geometry suggest that longitudinal registry of subfilaments within the fiber, mediated by the interaction and conformation of the displayed proteins and their interaction with surfaces, gives rise to the observed morphologies, including defects and kinks. Of most interest is the role of small molecule modulation of fiber structure and mechanical stability. A minimum complexity model is proposed to capture and explain the fiber morphology in the light of these results. Understanding the complex interplay between these factors will enable a fiber design that supports longitudinal electron transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the structural control of individual carbon nanotubes (CNTs), the morphological control of their assemblies is crucial to realize miniaturized CNT devices. Microgradients in the thickness of catalyst are used to enrich the variety of available self-organized morphologies of CNTs. Microtrenches were fabricated in gate/spacer/cathode trilayers using a conventional self-aligned top-down process and catalyst exhibiting a microgradient in its thickness was formed on the cathode by sputter deposition through gate slits. CNTs, including single-walled CNTs, of up to 1μm in length were grown within 5-15 s by chemical vapor deposition. The tendency of thin CNTs to aggregate caused interactions between CNTs with different growth rates, yielding various morphologies dependent on the thickness of the catalyst. The field emission properties of several types of CNT assemblies were evaluated. The ability to produce CNTs with tailored morphologies by engineering the spatial distribution of catalysts will enhance their performance in devices. © 2011 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology of Gomphonema kaznakowi Mereschkowsky was investigated using light microscopy. This species has two morphologically distinct areas near the headpole; an unornamented and an ornamented area. The two areas are distinguished from each other by the combination of size and striae number. A new species, Gomphonema yangtzensis Li nov. sp. is identified based on an ornamented area near the headpole. G. kaznakowi is reported from the upper and middle part of the Yangtze River, and was also found in the upper section of the Yellow River. G. yangtzensis was found in the upper area of the Yellow River and the middle of the Yangtze River. Their limited distribution may be due to certain environmental conditions or a different dispersal rate. Both species are illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the surface morphology of Ag on the surface-plasmon-enhanced emission of ZnO films have been studied for a ZnO/Ag/Si system by photoluminescence spectroscopy and atomic force microscopy. The results indicate that the enhancement of ZnO ultraviolet emission is dependent on the deposition conditions of the Ag interlayers. By examining the dependence of the enhancement ratio of surface-plasmon-mediated emission on the characteristic parameters of Ag surface morphology, we found that the surface plasmon coupling to light is determined by both the Ag particle size and density.