995 resultados para Mononuclear complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The syntheses and characterization of some new mixed-ligand nickel(II) complexes {Ni(L-1)(PPh3)] (1), Ni(L-1)(Py)] (2), Ni(L-2)(PPh3)]center dot DMSO (3), Ni(L-2)(Imz)] (4), Ni(L-3)(4-pic)] (5) and RNi(L-3))(2)(mu-4,4'-byp)]center dot 2DMSO (6)1 of three selected thiosemicarbazones the 4-(p-X-phenyl)thiosemicarbazones of salicylaldehyde) (H2L1-3) (A, Scheme 1) are described in the present study, differing in the inductive effect of the substituent X (X = F, Br and OCH3), in order to observe its influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and the metal complexes were successfully characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and cyclic voltammetry. The molecular structures of four mononuclear (1-3 and 5) and one dinuclear (6) Ni(II) complex have been determined by X-ray crystallography. The complexes have been screened for their antibacterial activity against Escherichia coli and Bacillus. The minimum inhibitory concentrations of these complexes and their antibacterial activities indicate that compound 4 is the potential lead molecule for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of the salicylhydrazone of 2-hydroxy-1-naphthaldehyde (H2L1), anthranylhydrazone of 2hydroxy-l-naphthaldehyde (H2L2), benzoylhydrazone of 2-hydroxy-1-acetonaphthone (H2L3) and anthranylhydrazone of 2-hydroxy-1-acetonaphthone (H2L4; general abbreviation H2L) with MoO2(acac)21 afforded a series of 5- and 6- coordinate Mo(VI) complexes of the type MoO2L1-2(ROH)] where R = C2H5 (1) and CH3 (2)], and MoO2L3-4] (3 and 4). The substrate binding capacity of 1 has been demonstrated by the formation of one mononuclear mixed-ligand dioxidomolybdenum complex MoO2L1(Q)] (where Q= gamma-picoline (la)). Molecular structure of all the complexes (I, la, 2,3 and 4) is determined by X-ray crystallography, demonstrating the dibasic tridentate behavior of ligands. All the complexes show two irreversible reductive responses within the potential window -0.73 to -1.08 V, due to Movl/Mov and Mov/Mow processes. Catalytic potential of these complexes was tested for the oxidation of benzoin using 30% aqueous H2O2 as an oxidant in methanol. At least four reaction products, benzoic acid, benzaldehydedimethylacetal, methyl benzoate and benzil were obtained with the 95-99% conversion under optimized reaction conditions. Oxidative bromination of salicylaldehyde, a functional mimic of haloperoxidases, in aqueous 1-1202/KEr in the presence of HC1O4 at room temperature has also been carried out successfully. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of 2,2'-bipyridine (bpy) with dinuclear complexesRuCl(dfppe)(mu-Cl)(3)Ru(dmso-S)(3)](dfppe = 1,2-bis(dipentafluorophenyl phosphino)ethane (C6F5)(2)PCH2CH2P(C6F5)(2); dmso = dimethyl sulfoxide) (1) or RuCl(dfppe)(mu-Cl)(3)RuCl(dfppe)] (2) affords the mononuclear species trans-RuCl2(bpy)(dfppe)] (3). Using this precursor complex (3), a series of new cationic Ru(II) electrophilic complexes RuCl(L)(bpy)(dfppe)]Z] (L = P(OMe)(3) (5), PMe3 (6), CH3CN (7), CO (8), H2O (9); Z = OTf (5, 6, 7, 8), BAr4F (9) have been synthesized via abstraction of chloride by AgOTf or NaBAr4F in the presence of L. Complexes 5 and 6 were converted into the corresponding isomeric hydride derivatives RuH(PMe3)(bpy)(dfppe)]OTf] (10a, 10b) and RuH(P(OMe)(3))(bpy)(dfppe)]OTf] (11a, 11b) respectively, when treated with NaBH4. Protonation of the cationic monohydride complex (11a) with HOTf at low temperatures resulted in H-2 evolution accompanied by the formation of either solvent or triflate bound six coordinated species Ru(S)(P(OMe)(3))(bpy)(dfppe)]OTf](n) (S = solvent (n = 2), triflate (n = 1)] (13a/13b); these species have not been isolated and could not be established with certainty. They (13a/13b) were not isolated, instead the six-coordinated isomeric aqua complexes cis-(Ru(bpy)(dfppe)(OH2)(P(OMe)(3))]OTf](2) (14a/14b) were isolated. Reaction of the aqua complexes (14a/14b) with 1 atm of H-2 at room temperature in acetone-d(6) solvent resulted in heterolytic cleavage of the H-H bond. Results of the studies on H-2 lability and heterolytic activation using these complexes are discussed. The complexes 3, 5, 11a, and 14a have been structurally characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular organization of a metal complex may significantly contribute to the magnetization dynamics of mononuclear SMMs. This is illustrated for a heptacoordinated Fe(II) complex with rather moderate Ising-type anisotropy for which a slow magnetization relaxation with significant energy barrier was reached when this complex was properly organized in the crystal lattice. Incidentally, it is the first example of single-ion magnet behaviour of Fe(II) in a pentagonal bipyramid surrounding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide complexes Ln(DTPAAQ)(DMF)] (1-3) (Ln - Pr (1), Eu (2), Tb (3), H(3)DTPAAQ - N, N `'-bis(3-amidoquinolyl) diethylenetriamine-N, N', N `'-triacetic acid, DMF - N, N-dimethylformamide) were studied for their structures, photophysical properties, DNA and protein binding, DNA photocleavage, photocytotoxicity and cellular internalization. The crystal structures of complexes Ln(DTPAAQ)(DMF)] (1-3) display a discrete mononuclear nine-coordinate {LnN(3)O(6)} tricapped-trigonal prism (TTP) coordination geometry. The europium and terbium complexes show strong luminescence properties in the visible region having a long luminescence lifetime (tau = 0.51-0.64 ms). The conjugated 3-aminoquinoline moieties act as efficient light harvesting antennae, which upon photoexcitation transfer their energy to Eu(III) or Tb(III) for their characteristic D-5(0) -> F-7(J) or D-5(4) -> F-7(J) f-f transitions respectively. The complexes display efficient binding affinity to DNA (K-b = 3.4 x 10(4) - 9.8 x 10(4) M-1) and BSA (KBSA = 3.03 x 10(4) - 6.57 x 10(4) M-1). Europium and terbium complexes give enhanced luminescence upon interacting with CT-DNA suggesting possible luminescence-based sensing applications for these complexes. Complexes 1-3 show moderate cleavage of supercoiled (SC) DNA to its nicked circular (NC) form on exposure to UV-A light of 312 nm involving formation of singlet oxygen (O-1(2)) and hydroxyl radicals (cOH) in type-II and photoredox pathways. Eu(III) and Tb(III) complexes exhibit remarkable photocytotoxicity with human cervical cancer cell line (HeLa) (IC50 = 20.7-28.5 mM) while remaining essentially noncytotoxic up to 150 mM in the dark. Complexes are nontoxic in nature thus suitable for designing cellular imaging agents. Fluorescence microscopy data reveal primarily cytosolic localization of the Eu(III) and Tb(III) complexes in HeLa cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding and catalyzing chemical reactions requiring multiple electron transfers is an endeavor relevant to many outstanding challenges in the field of chemistry. To study multi-electron reactions, a terphenyl diphosphine framework was designed to support one or more metals in multiple redox states via stabilizing interactions with the central arene of the terphenyl backbone. A variety of unusual compounds and reactions and their relevance toward prominent research efforts in chemistry are the subject of this dissertation.

Chapter 2 introduces the para-terphenyl diphosphine framework and its coordination chemistry with group 10 transition metal centers. Both mononuclear and dinuclear compounds are characterized. In many cases, the metal center(s) are stabilized by the terphenyl central arene. These metal–arene interactions are characterized both statically, in the solid state, and fluxionally, in solution. As a proof-of-principle, a dinickel framework is shown to span multiple redox states, showing that multielectron chemistry can be supported by the coordinatively flexible terphenyl diphosphine.

Chapter 3 presents reactivity of the terphenyl diphosphine when bound to a metal center. Because of the dearomatizing effect of the metal center, the central arene of the ligand is susceptible to reactions that do not normally affect arenes. In particular, Ni-to-arene H-transfer and arene dihydrogenation reactions are presented. Additionally, evidence for reversibility of the Ni-to-arene H-transfer is discussed.

Chapter 4 expands beyond the chelated metal-arene interactions of the previous chapters. A dipalladium(I) terphenyl diphosphine framework is used to bind a variety of exogenous organic ligands including arenes, dienes, heteroarenes, thioethers, and anionic ligands. The compounds are structurally characterized, and many ligands exhibit unprecedented bindng modes across two metal centers. The relative binding affinities are evaluated spectroscopically, and equilibrium binding constants for the examined ligands are determined to span over 13 orders of magnitude. As an application of this framework, mild hydrogenation conditions of bound thiophene are presented.

Chapter 5 studies nickel-mediated C–O bond cleavage of aryl alkyl ethers, a transformation with emerging applications in fields such as lignin biofuels and organic methodology. Other group members have shown the mechanism of C–O bond cleavage of an aryl methyl ether incorporated into a meta-terphenyl diphosphine framework to proceed through β-H elimination of an alkoxide. First, the electronic selectivity of the model system is examined computationally and compared with catalytic systems. The lessons learned from the model system are then applied to isotopic labeling studies for catalytic aryl alkyl ether cleavage under dihydrogen. Results from selective deuteration experiments and mass spectrometry draw a clear analogy between the mechanisms of the model and catalytic systems that does not require dihydrogen for C–O bond cleavage, although dihydrogen is proposed to play a role in catalyst activation and catalytic turnover.

Appendix A presents initial efforts toward heterodinuclear complexes as models for CO dehydrogenase and Fischer Tropsch chemistry. A catechol-incorporating terphenyl diphosphine is reported, and metal complexes thereof are discussed.

Appendix B highlights some structurally characterized terphenyl diphosphine complexes that either do not thematically belong in the research chapters or proved to be difficult to reproduce. These compounds show unusual coordination modes of the terphenyl diphosphine from which other researchers may glean insights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel (E,E)-dioxime, 5,6:17,18-dibenzo-11,12-(4-nitrobenzo)-2,3-bis(hydroxyimino)-7,16-dithia-10,13-dioxa-1,4-diazacyclooctadecane) (H2L), has been synthesized from reaction of (E,E)-dichloroglyoxime (1) with 2,3:14,15-dibenzo 8,9-(4-nitrobenzo)-4,13-dithia-7,10-dioxa-1,16-diazahegzadecane (2). The mononuclear Co(III) complex (4) of this dioxime was prepared by oxidation of the cobalt (II) complex. The -capped Co(III) complex (5) was synthesized by using a precursor Co(III) complex and boron trifluoride dietherate. The heterotrinuclear complexes (6) and (7) were prepared by reaction of (5) with NiCl2·6H2O and CdCl2·H2O, respectively. In addition, the homotrinuclear Cu(II) complex (8), has also been prepared by the reaction of this dioxime with CuCl2·H2O. The structures of the dioxime and its complexes were identified by using elemental analysis, 1H- and 13C-NMR, IR, and mass spectral data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of (NH4)(2)WS4 and three polycarboxylate ligands {including nitrilotriacetate (nta(3-)), citrate (Hcit(3-)) and ethylenediaminetetra acetate (EDTA(4-))} in H2O/EtOH at ambient temperature have resulted in three new trioxotungsten (VI) complexes, K-3[WO3(nta)]center dot H2O 1, (NH4)(4)[WO3(cit)]center dot 2 H2O 2 and K-2(NH4)(2)[W2O6(EDTA)]center dot 4H(2)O 3, respectively. These three complexes have been characterized by IR, XPS, TGA-DTA, H-1 and C-13 NMR spectroscopy. And their structures have been determined by X-ray crystallographic studies, which confirm that I and 2 are mononuclear compounds and 3 is a binuclear compound. Each tungsten atom in 1-3 is coordinated to three unshared oxygen atoms, which adopt fac stereochemistry, while the remaining fac positions are occupied by three atoms from the ligands. The electrochemical properties of 2 and 3 have been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of orange-red to red phosphorescent heteroleptic Cu-I complexes (the first ligand: 2,2 '-biquinoline (bq), 4,4 '-diphenyl2,2 '-biquinoline (dpbq) or 3,3 '-methylen-4,4 '-diphenyl-2,2 '-biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2-(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline-type ligands, complexes [Cu(mdpbq)(PPh3)(2)](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), phosphorescent organic light-emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/ TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A(-1) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear Cu complexes with red emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mononuclear Cu-I complexes with mixed ligands are used to fabricate green phosphorescent organic light-emitting diodes. The electroluminescence (EL) maximum at 524 nm coincides well with its photoluminescent (PL) spectrum in poly(methyl methacrylate) film (see Figure). A maximum current efficiency of 10.5 cd A(-1) at 105 cd m(-2) and a maximum brightness up to 1663 cd m(-2) are

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new organotin complexes, namely [(Bu2Sn)(2)O(EtO)(L1)](2) (1), [(Bu2Sn)(2)O(EtO)(L2)](2) (2), [(Bu2Sn)(2)O(EtO)(L-3)](2) (3) and [Ph3Sn(L4)]center dot 0.5H(2)O (4), were obtained by reactions of Bu2SnO and Ph3SnOH with 4-phenylideneamino-3-methyl-1,2,4-triazole-5-thione (HL1), 4-furfuralideneamino-3-methyl-1,2,4-triazole-5-thione (HL2), 4-(2-thienylideneamino)-3-ethyl-1,2,4-triazole-5-thione (HL3) and 4-(3,5-di-t-butylsalicylideneamino)-3-ethyl-1,2,4-triazole-5-thione (HL4). Compounds 1-4 were characterized by elemental analysis, IR spectra and their structures were determined by single-crystal X-ray diffraction methods. Complexes 1-3 show similar structures containing a Sn4O4 ladder skeleton in which each of the exo tin atoms is bonded to the N atom of a corresponding thione-form deprotonated ligand. Complex 4 shows a mononuclear structure in which the tin atom of triphenyltin group is coordinated by the S atom of a thiol-form L4(-) anion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, four new luminescent silver(I) sulfonate complexes with PPh3, namely Ag(L1)(PPh3)(2) (1), Ag(L2)(PPh3)(3) (2), [Ag-2(L3)(PPh3)(4) (H2O)center dot 1.5CH(3)CN center dot 0.5H(2)O (3) and [Ag-4(L4)(PPh3)(10)]center dot 8H(2)O (4), where L1=p-toluenesulfonate, L2=1-naphthalenesulfonate, L3=3-carboxylate-4-hydroxybenzenesulfonate, L4=1, 3, 6, 8-pyrenetetrasulfonatc and PPh3=triphenylphosphine, have been synthesized and characterized. The crystal structures were determined by single-crystal X-ray diffraction method. Compounds 1, 2, 3 and 4 adopt discrete structures rather than polymeric structures. Compounds I and 2 show mononuclear structures while 3 and 4 are dinuclear and tetranuclear molecules, respectively. Moreover the numbers of PPh3 molecules coordinating to one silver center are two or three. The photoluminescent properties of 1, 2 and 3 are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly of the building block [Cu(oxbe)](-) with Mn(II) led to a novel coordination polymer {[Cu(oxbe)]Mn(H2O)(Cu(oxbe)(DMF)]}(n).nDMF.nH(2)O, where H(3)oxbe is a new dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)-oxamido and DMF = dimethylformamide. The crystal forms in the triclinic system, space group P(1)over-bar, with a = 9.260(4) angstorm, b = 12.833(5) angstrom, c = 15.274(6) angstrom , alpha = 76.18(3)degrees, beta = 82.7(3)degrees, gamma = 82.31(3)degrees, and Z = 2. The crystal structure of the title complex reveals that the two-dimensional bimetallic layers are constructed of (CuMnII)-Mn-II-Cu-II chains linked together by carboxylate bridge and hydrogen bonds help to produce a novel three-dimensional channel-like structure. The magnetic susceptibility measurements (5-300 K) were analyzed by means of the Hamiltonian (H)over-cap = -2J(S)over-cap (Mn)((S)over-cap(Cu1) + (S)over-cap(Cu2)), leading to J = -17.4 cm(-1).