981 resultados para Molecular docking
Resumo:
Le triméthoprime (TMP) est un antibiotique communément utilisé depuis les années 60. Le TMP est un inhibiteur de la dihydrofolate réductase (DHFR) bactérienne chromosomale. Cette enzyme est responsable de la réduction du dihydrofolate (DHF) en tétrahydrofolate (THF) chez les bactéries, qui lui, est essentiel à la synthèse des purines et ainsi, à la prolifération cellulaire. La résistance bactérienne au TMP est documentée depuis plus de 30 ans. Une des causes de cette résistance provient du fait que certaines souches bactériennes expriment une DHFR plasmidique, la DHFR R67. La DHFR R67 n'est pas affectée par le TMP, et peut ainsi remplacer la DHFR chromosomale lorsque celle-ci est inhibée par le TMP. À ce jour, aucun inhibiteur spécifique de la DHFR R67 est connu. En découvrant des inhibiteurs contre la DHFR R67, il serait possible de lever la résistance au TMP que la DHFR R67 confère aux bactéries. Afin de découvrir des inhibiteurs de DHFR R67, les approches de design à base de fragments et de criblage virtuel ont été choisies. L'approche de design à base de fragments a permis d'identifier sept composés simples et de faible poids moléculaire (fragments) inhibant faiblement la DHFR R67. À partir de ces fragments, des composés plus complexes et symétriques, inhibant la DHFR R67 dans l'ordre du micromolaire, ont été élaborés. Des études cinétiques ont montré que ces inhibiteurs sont compétitifs et qu'au moins deux molécules se lient simultanément dans le site actif de la DHFR R67. L'étude d'analogues des inhibiteurs micromolaires de la DHFR R67 a permis de déterminer que la présence de groupements carboxylate, benzimidazole et que la longueur des molécules influencent la puissance des inhibiteurs. Une étude par arrimage moléculaire, appuyée par les résultats in vitro, a permis d'élaborer un modèle qui suggère que les résidus Lys32, Gln67 et Ile68 seraient impliqués dans la liaison avec les inhibiteurs. Le criblage virtuel de la librairie de 80 000 composés de Maybridge avec le logiciel Moldock, et les essais d'inhibition in vitro des meilleurs candidats, a permis d'identifier quatre inhibiteurs micromolaires appartenant à des familles distinctes des composés précédemment identifiés. Un second criblage virtuel, d'une banque de 6 millions de composés, a permis d'identifier trois inhibiteurs micromolaires toujours distincts. Ces résultats offrent la base à partir de laquelle il sera possible de développer iv des composés plus efficaces et possédant des propriétés phamacologiquement acceptables dans le but de développer un antibiotique pouvant lever la résistance au TMP conféré par la DHFR R67.
Resumo:
L’avancée des infrastructures informatiques a permis l’émergence de la modélisation moléculaire. À cet effet, une multitude de modèles mathématiques sont aujourd’hui disponibles pour simuler différents systèmes chimiques. À l’aide de la modélisation moléculaire, différents types d’interactions chimiques ont été observés. À partir des systèmes les plus simples permettant l’utilisation de modèles quantiques rigoureux, une série d’approximations a été considérée pour rendre envisageable la simulation de systèmes moléculaires de plus en plus complexes. En premier lieu, la théorie de la fonctionnelle de densité dépendante du temps a été utilisée pour simuler les énergies d’excitation de molécules photoactives. De manière similaire, la DFT indépendante du temps a permis la simulation du pont hydrogène intramoléculaire de structures analogues au 1,3,5-triazapentadiène et la rationalisation de la stabilité des états de transition. Par la suite, la dynamique moléculaire et la mécanique moléculaire ont permis de simuler les interactions d’un trimère d’acide cholique et d’un pyrène dans différents solvants. Cette même méthodologie a été utilisée pour simuler les interactions d’un rotaxane-parapluie à l’interface d’un système biphasique. Finalement, l’arrimage moléculaire et les fonctions de score ont été utilisés pour simuler les interactions intermoléculaires entre une protéine et des milliers de candidats moléculaires. Les résultats ont permis de mettre en place une stratégie de développement d’un nouvel inhibiteur enzymatique.
Resumo:
Wydział Chemii
Resumo:
With many cancers showing resistance to current chemotherapies, the search for novel anti-cancer agents is attracting considerable attention. Natural flavonoids have been identified as useful leads in such programmes. However, since an in-depth understanding of the structural requirements for optimum activity is generally lacking, further research is required before the full potential of flavonoids as anti-proliferative agents can be realised. Herein a broad library of 76 methoxy and hydroxy flavones, and their 4-thio analogues, was constructed and their structure-activity relationships for anti-proliferative activity against the breast cancer cell lines MCF-7 (ER+ve), MCF-7/DX (ER+ve, anthracycline resistant) and MDA-MB-231 (ER-ve) were probed. Within this library, 42 compounds were novel, and all compounds were afforded in good yields and > 95% purity. The most promising lead compounds, specifically the novel hydroxy 4-thioflavones 15f and 16f, were further evaluated for their anti-proliferative activities against a broader range of cancer cell lines by the National Cancer Institute (NCI), USA and displayed significant growth inhibition profiles (e.g Compound-15f: MCF-7 (GI50 = 0.18 μM), T-47D (GI50 = 0.03 μM) and MDA-MB-468 (GI50 = 0.47 μM) and compound-16f: MCF-7 (GI50 = 1.46 μM), T-47D (GI50 = 1.27 μM) and MDA-MB-231 (GI50 = 1.81 μM). Overall, 15f and 16f exhibited 7-46 fold greater anti-proliferative potency than the natural flavone chrysin (2d). A systematic structure-activity relationship study against the breast cancer cell lines highlighted that free hydroxyl groups and the B-ring phenyl groups were essential for enhanced anti-proliferative activities. Substitution of the 4-C=O functionality with a 4-C=S functionality, and incorporation of electron withdrawing groups at C4’ of the B-ring phenyl, also enhanced activity. Molecular docking and mechanistic studies suggest that the anti-proliferative effects of flavones 15f and 16f are mediated via ER-independent cleavage of PARP and downregulation of GSK-3β for MCF-7 and MCF-7/DX cell lines. For the MDA-MB-231 cell line, restoration of the wild-type p53 DNA binding activity of mutant p53 tumour suppressor gene was indicated.
Resumo:
Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.
Resumo:
To search for new cruzain inhibitors, the synthesis of a series of novel 2-(N`-benzylidenehydrazino)-4-trifluoromethyl-pyrimidines in a convergent manner is presented. The cruzain inhibitory activity of some of these compounds was evaluated and a binding model was proposed. All derivatives tested were active and the most significant inhibitory effect (80% at 100 mu M) and IC(50) value (85 mu M) were obtained from the 2-(N`-4-chloro-benzylidenehydrazino)-4-trifluoromethyl-pyrimidine. Although further structural optimization to improve solubility is necessary, the molecular docking studies suggest that these inhibitors occupy the S2 pocket without irreversible enzyme inactivation, through hydrophobic interactions, thus, indicating a desirable mode of interaction for the design of novel inhibitors. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti-cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo- or sulfate-bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer-generated conformational ensembles shown here indicate that the last 30-40 residues in the C-terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C-terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B-inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins.
Resumo:
In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Diabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.
Resumo:
Background: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates
Resumo:
The present work reports on the synthesis, biological assaying and docking studies of a series of 12 aryl thiosemicarbazones, which were planned to act over two main enzymes, cruzain and trypanothione reductase. These enzymes are used as targets of trypanocidal activity in Chagas disease control with a minimal mutagenic profile. Three p-nitroaromatic thiosemicarbazones showed high activity against Trypanosoma cruzi in in vitro assays (IC50 < 57 μM), and no mutagenic profile was observed in micronucleous tests. Although the in vitro inhibition test showed that 10-μM doses of eight compounds inhibited cruzain activity, no correlation was found between cruzain inhibition and trypanocidal activity. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.
Resumo:
The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity. © 2013 Elsevier GmbH. All rights reserved.