955 resultados para Micro-milling
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
The purpose of this paper is to explore the means of building the capacity of those who are running an organisation designed to support and resource start-ups and growing micro enterprises among some of the world’s poorest urban poor. The project is based in Beira, Mozambique, one of the poorest countries in the world. The result of this study is the development of a model for providing ongoing, inexpensive, effective, capacity building in developing economies. The model also provides a base for the further development of strategies to provide better support to micro entrepreneurs in poor developing economies.
Resumo:
Transport and logistics are essential to effective business. Very little is currently known about the impact of improved transport on micro-enterprises in developing economies and whether improvements in this area would assist the very poor. This paper looks at the obstacles of an inefficient transport facilitation system and the high costs incurred by 22 survival micro-entrepreneurs funded by the same local NGO and operating in diverse industry sectors in a peri-urban context in Mozambique. Six case studies are selected to illustrate the most common constraints they face. The perspectives of the micro-business owners are confronted with those of government officials and community leaders for two reasons: to identify any mismatch and to discuss possible solutions. Significant discrepancies are detected between government agenda and needs of the population, while community-based entrepreneurship (CBE) is discussed as a possible collective strategy in dealing with the problem.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
Micro-credit has often been used as a poverty alleviation strategy. However, there is little evidence to suggest that micro-credit alone can promote economic activities because micro-credit does not teach anything by itself (Brett 2006; Mayoux 1999; Sievers & Vandenberg 2007). Mistakenly, the focus of micro-credit has been the alleviation of immediate poverty, rather than the development of economic activity that would provide a long term solution. Paraphrasing the age old saying, "Give a man a fish and you feed him for a day, teach him to fish and you will feed him for a life time" micro-credit enables the fisherman to buy a net, but in many cases does nothing to ensure that he knows how to use it to benefit his family and the community. If the borrower doesn't know how to use the net, he will return to his old way of doing things-but with the added burden of having to pay back the debt. Given the state of extreme poverty experienced by the vast majority of the population in developing countries, borrowed money is often used for purposes other than creating the foundations for a sustainable economic growth. Typical examples of how micro-credit is generally used include covering funeral costs, buying food, medicines, and other similarly important necessities. The main problem that derives from using loans in this way is that apart from not improving living conditions in a sustainable manner, borrowers are also exposed to the risk of over-indebtedness, with its subsequent human and social implications.
Resumo:
A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.
Resumo:
Narratives of forced migration are open to a variety of interpretations. In mental health, refugee narratives of arduous journeys in the face of systemic macro socio-political forces are often transformed from this context into a medicalized micro context of inner individual worlds. Both the dominant pathogenic lens of trauma studies and the growing salutogenic lens embodied in resilience research, often reflect a western cultural idiom of focusing on the individualized nature of these phenomena. Using qualitative data collected from refugees from Burma now settling in Australia, the article emphasizes the need for a more reflexive and expansive account of both suffering and hope within refugee narratives. It recounts these narratives within a conceptual framework which acknowledges the importance of the connections between the micro individual experience and the macro, socio-political context. This is not only a question of political principle, but also a matter of listening to the voice of those who know most about the relationship between macro forces of human rights violations and their impact on individual, family and community trajectories.
Resumo:
Micro and small businesses contribute the majority of business activity in most developed economies. They are typically embedded in local communities and therefore well placed to influence community wellbeing. While there has been considerable theoretical and empirical analysis of corporate citizenship and corporate social responsibility (CSR), the nature of micro-business community responsibility (mBCR) remains relatively under-explored. This article presents findings from an exploratory study of mBCR that examined the approaches, motivations and barriers of this phenomenon. Analysis of data from 36 semi structured interviews with micro-business owner-operators in the Australian city of Brisbane revealed three mBCR approaches, suggesting an observable mBCR typology. Each mBCR type was at least partly driven by enlightened self interest (ESI). In addition to a pure ESI approach, findings revealed ESI combined with philanthropic approaches and ESI combined with social entrepreneurial approaches. The combination of doing business and doing good found amongst participants in this study suggests that many micro-business owner-operators are supporters of their local communities, and therefore driven by more than profit. This study provides a fine-grained understanding of micro-business involvement in community wellbeing through a lens of responsible business behaviour.
Resumo:
An approach for modeling passenger flows in airport terminals by a set of devised advanced traits of passengers is proposed. Advanced traits take into account a passenger’s cognitive preferences which would be the underlying motivations of route-choice decisions. Basic traits are the status of passengers such as travel class. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, we advise that real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making by individual personals. Inside airport terminals, passengers are goal-directed and not only use standard processing check points but also behave discretionary activities during the course. In this paper, we integrated discretionary activities in the study to fulfill full-range of passenger flows. In the model passengers are built as intelligent agents who possess a bunch of initial basic traits and then can be categorized into ten distinguish groups in terms of route-choice preferences by inferring the results of advanced traits. An experiment is executed to demonstrate the capability to facilitate predicting passenger flows.
Resumo:
Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork